SCAPS 3.0 An introduction

Koen Decock & Marc Burgelman

Overview

- Getting started
- General working principles
- Tips & Tricks
 - Numerical limitations
 - The numerical panel
 - A neutral defect
 - Curve Info: Get informed!
 - Preserve your work for the future: saving and commenting.
 - Speeding up: Batch Recorder Script
 - Grading
 - Zooming: Get a closer look!
 - The blue button

Getting Started...

- Opto-electrical simulation of 1-D structure of semiconductor layers
- Special attention for contacts and interfaces
- Variable bias voltage, temperature & illumination
- DC & AC calculations
- Designed for CdTe and CIGS Solar Cells, but also used in other material systems [©]

SCAPS 3.0.0 Action Panel				
Working point Temperature (K) ↓ 300.00 Voltage (V) ▲ 0.0000	Series resistance -	Shunt resistance	Action list –	-All SCAPS settings
Frequency (Hz) 1.000E+6 Number of points 5	1.00E+0 Rs Ohm. S/c	cm^2 Rsh 1.00E+3 m^2 Gsh 1.00E-3	2. Work	king Point ^{age}
Illumination: Dark Light	G(x): From	internal SCAPS calculation	Reac 3. Sele	ct Calculations
Light source for internal G(x) Spectrum file: Illuminateds Select Scaps\SCAPS 3.0 werkversie ves Shore	calculation de from left (n-side) left (p-side) spectrum\AM1_5G 1 sun spe twavel. (nm) 0.0	Incident (bias) light power (W/m2) sun or lamp 0.00	Sele 5. Analy	Calculations yze results
Spectrum cut off?	wavel. (nm) 2000.0	after cut-off 0.00	Attenu	ation (%)
leutral Dens. 0.0000 Trans	mission (%)	after ND 0.00	Lieal Light Current in cell (r	nA/cm2) 0.0000
Action Pause at e	each step		number	
Action Pause at e	each step	€ 0.8000	number	00 increment (V)
Action T-Pause at Current voltage V1 (V)	each step	 0.8000 0.8000 	number	00 increment (V) 00 increment (V)
Action T-Pause at a Current voltage V1 (V) Capacitance voltage V1 (V) Capacitance frequency f1 (Hz)	each step	 0.8000 0.8000 1.000E+6 	number of points 41	00 increment (V) 00 increment (V) points per decade
Action T-Pause at a Current voltage V1 (V) Capacitance voltage V1 (V) Capacitance frequency f1 (Hz) Spectral response WL1 (nr	each step	 0.8000 0.8000 0.8000 1.000E+6 900 	number of points 41 0.02 81 0.02 21 \$5 61 10	00 increment (V) 00 increment (V) points per decade increment (nm)
Action T-Pause at a Current voltage V1 (V) Capacitance voltage V1 (V) Capacitance frequency f1 (Hz) Spectral response WL1 (nr Set problem load	each step	 0.8000 0.8000 1.000E+6 900 	number	00 increment (V) 00 increment (V) points per decade increment (nm) Set Problem
Action T-Pause at e Current voltage V1 (V) Capacitance voltage V1 (V) Capacitance frequency f1 (Hz) Spectral response WL1 (nr Set problem load Calculate: single shot Set problem	each step	 0.8000 0.8000 1.000E+6 900 Results of cal 	number of points 41	00 increment (V) 00 increment (V) points per decade increment (nm) Set Problem Save all simulations
Action T-Pause at e Current voltage V1 (V) Capacitance voltage V1 (V) Capacitance frequency f1 (Hz) Spectral response WL1 (nr Set problem load Calculate: single shot Calculate: batch	each step	 0.8000 0.8000 1.000E+6 900 Results of call EB G,R AC I-V 	number of points	00 increment (V) 00 increment (V) 00 points per decade increment (nm) Set Problem Save all simulations Clear all simulations
Action T-Pause at a Current voltage V1 (V) Capacitance voltage V1 (V) Capacitance frequency f1 (Hz) Spectral response WL1 (nr Set problem load Calculate: single shot Calculate: batch Calculate: recorder	each step	 0.8000 0.8000 1.000E+6 900 Results of call EB G,R AC I-V Recorder resources 	number of points 41	00 increment (V) 00 increment (V) 00 points per decade 0 increment (nm) 00 Set Problem 00 Save all simulations 01 Clear all simulations 01 Clear simulations

Getting Started

Getting Started: Define Problem

SCAPS 3.0.0 Layer Properties Panel								2.5
LAYER 1		CISSe		Recombination model				
thickness (μm)	1.800			Band to band recombination				
Layer Composition GradingType	uniform y, 0 <	y < 1 -	Ľ	Radiative recombination coefficient (cm*/s)	0.000E+0	0.000E+0	uniform	-
Uniform composition y =	0.100	0.100]	Auger hole capture coefficient (cm °6/s)	0.000E+0	0.000E+0	uniform	+
Semiconductor Property P of the pure materi	a pure A (y = 0)	pure B (y = 1)	Composition dependence	Recombination at defects				
bandgap (eV)	1.040	1.530	parabolic 🔻	charge type : acceptor : {0/}				
electron affinity (eV)	4.300	4.300	uniform 🔻	total density (1,cm3): Uniform 1.000e+16				
dielectric permittivity (relative)	12.000	12.000	uniform 🔻	grading Nt(x): uniform				
CB effective density of states (1/cm ^3)	7.000E+17	7.000E+17	uniform 🔻	energydistribution: single; Et = 0.40 eV above	energydistribution: single; Et = 0.40 eV above EV			
VB effective density of states (1,cm ~3)	1.500E+19	1.500E+19	uniform	this defect only, if active: tau_n = 1.0e+00 ns	,tau_p = 1.3e+	+01 ns		
electron thermal velocity (cm/s)	1.000E+7	1.000E+7	uniform 🔫	this defect only, if active: Ln = 5.1e-01 µm, L	5 = 9.0e-01 μm			
hole thermal velocity (cm/s)	8.000E+6	8.000E+6	uniform 🔻					
electron mobility (cm ² /Vs)	1.000E+2	1.000E+2	uniform 🔫	pope				
hole mobility (cm²/Vs)	2.500E+1	2.500E+1	uniform 🔻	- Hone				
effective mass of electrons	1.000E+0	1.000E+0	uniform					
effective mass of holes	1.000E+0	1.000E+0	uniform	1				
ND grading dependent: on composition y: NI	D (y)	- CAI	low Tunneling					
shallow donor density ND(y) (1,cm3)	1.000E+5	1.000E+5	uniform 🔹					
NA grading dependent: on composition y: NA	. (y)	-						
shallow acceptor density NA(y) (1,cm3)	5.000E+15	5.000E+15	uniform 🔹 🔻	1				
Absorption model	Show /Set alph	a(composition; la	ambda)					
	alpha (v=0)	alpha	a (y=1)					
	from n	iodel	from model from file					
absorption constant A (1,cm eV (1/2))	1.000E+5	1.000E	+5	[]				
absorption constant B (eV (1/2),cm)	0.000E+0	0.000E	+0			200		
	CISMã	ller abs Culo S	2 Alonso Mölle	Accept	car	cel 1		
	U U U U							
silow save	absorption file for	ry = 0 absorp	tion file for y = 1	J				

Getting Started: Analyze results

General working principles:

Semiconductor equations

$$\begin{bmatrix} \frac{\partial}{\partial x} \left(\varepsilon \frac{\partial \psi}{\partial x} \right) = -\frac{q}{\varepsilon_0} \left[-n + p - N_A^- + N_D^+ + \frac{1}{q} \rho_{defect}(n, p) \right] & \text{Poisson} \\ -\frac{\partial j_n}{\partial x} + G - U_n(n, p) = \frac{\partial n}{\partial t} \\ -\frac{\partial j_p}{\partial x} + G - U_p(n, p) = \frac{\partial p}{\partial t} \end{bmatrix} & \text{Continuity relations}$$

Constitutive relations

$$\begin{cases} j_n = -\frac{\mu_n}{q} n \frac{\partial E_{Fn}}{\partial x} \\ j_p = \frac{\mu_p}{q} p \frac{\partial E_{Fp}}{\partial x} \end{cases}$$

- Boundary conditions at interfaces and contacts
- RESULT: system of coupled differential equations in {ψ, n, p} or {ψ, E_{Fn}, E_{Fp}}
- Solved numerically

General working principles:

Discretization

- Equations solved using finite differences
- Structure discretized => MESH
 - Coarse meshing in the middle of a layer
 - Finer mesh near the interfaces & contacts
 - Two discretization points for each interface
 - Meshing can be updated during simulation process (numerical panel)

The pathway to a solution¹

¿Gummel scheme with Newton Raphson substeps?

- Solve (1) for ψ with given $E_{Fn} \& E_{Fp}$ Solve (2) for E_{Fn} with given $\psi \& E_{Fp}$ Solve (3) for E_{Fp} with given $\psi \& E_{Fn}$ \bullet

$$\begin{cases} (1): \frac{\partial}{\partial x} \left(\varepsilon \frac{\partial \psi}{\partial x} \right) = -\frac{q}{\varepsilon_0} \left[-n + p - N_A^- + N_D^+ + \rho_{defect}(n, p) \right] \\ (2): -\frac{\partial j_n}{\partial x} + G - U_n(n, p) = \frac{\partial n}{\partial t} \\ (3): -\frac{\partial j_p}{\partial x} + G - U_p(n, p) = \frac{\partial p}{\partial t} \end{cases}$$

- Make first guess of solution
- Improve guess with tangent lines
- Works well if first guess was not too bad

- Difference between several steps should not be too large
- Number of intermediate steps to get to the workingpoint can be set
- Every batch step starts at the startpoint

General working principles:

AC-analysis

- Small signal analysis: $\tilde{V} \rightarrow 0$
- Small signal values are complex numbers!!!
- Small signal currents, potential (ψ) and Fermi levels displayed on ac-panel
- Admittance interpreted as capacitance-conductance circuit

Tips and Tricks

Numerical limitations

- Keep the variation between different calculation steps limited.
- Keep it realistic: SCAPS is developed and tested to simulate realistic situations, hence things can go wrong when simulating unphysical situations
- Don't overdo

Do you really want to know the current at T=20K, V=300V?

Stop after V_{oc} Don't calculate the strong forward currents (slow to calculate) if you don't

need them.

Numerical limitations

$1.000 - 10^{-15} \neq 1.000$

AC-calculation when Re(J) » Im(J)

- negative capacitances
- C increases with frequency

Current Density

The numerical panel¹

t

The numerical panel²

Remove/add mesh points: based on:

- ψ , E_{Fn} and E_{Fp}
- Generation
- Recombination

Occupation probability of deep defects: Charge distribution

Occupation probability of deep defects: Charge distribution

A Neutral Defect

- Recombination present ↔ No influence on charges
 - Separation of direct and charge related effects of defects
- Does not exist in real materials
- Handy in simulation
 - Whilst building model
 - For unimportant layers
- Neutral defect + shallow doping ~ charged defect

- Information about Graph/Curve/Point when clicking on a plot:
- Point/Curve nearest to mouse-click selected.
- ¿Which curve corresponds to which simulation?

Save your work and settings

ADDING COMMENT STRONGLY RECOMMENDED! 2

- The recorder overrules all calculations set at the action panel
- Items recorded at workingpoint conditions
- Only simulations to get to the asked properties are performed

Speeding up:

Recorder²

Recorded items shown as function of:

Batch parameters (cell characteristics – general properties – interface properties)

Speeding up:

- Run SCAPS from command-line or external program
- Automatize user-interface operations
- Analyze results in a non standard way
 - Make your own extension to SCAPS: SCAPSUserFunction.dll
 - Root/extrema finding available
 - Access all recordable variables: singleshotbatch

- Keep the script manual close at hand
- Freedom has its price! While scripting you have more power to let things go wrong

Grading

ND grading dependent on position x: ND	(X)	-	1
shallow donor density ND(x) (1/cm3)	1.000E+15	1.000E+16	parabolic
NA grading dependent: on composition y:	NA (y)	-	
shallow acceptor density NA(y) (1/cm3)	1.000E+1	1.000E+17	exponential 🔻

- Material driven approach
- N_A , N_D , $N_T \rightarrow$ Grading along composition or position
- What is UNIFORM?
 - Uniform A / Uniform B: Only one material present (nothing else can/should be graded)
 - Uniform Y: Uniform material is a mixture of two materials (other parameters can be graded)
- Special absorption interpolation

Zooming and Scaling

log lin

- Set scaling on the scaling panel
- Switch between Linear & Logarithmic

Press CTRL and draw a rectangle in a graph to zoom in

Press CTRL and right mouse button to zoom out.

The blue button

Other panels need input first!

- Allows browsing of the cell definition
- Makes sure you find minimized panels back
- Uneditable panels are dimmed

Enjoy SCAPS

- SCAPS is freeware:
 - Register when using: 1
 Marc.Burgelman@Elis.Ugent.be
 Koen.Decock@Elis.Ugent.be
 - Cite when publishing:
 - M. Burgelman et al., Thin Solid Films, 361-362, 527-532 (2000)
 - Other more specialized articles
- More Details:
 - Collection of (Add-on) user manuals
 - Contributions in literature

SCAPS info

More Questions?

Raise your hand and ask!

#=
Marc.Burgelman@Elis.Ugent.be
Koen.Decock@Elis.Ugent.be

Please explain your problem, what you did and what you expected!

Please add .def- or .scaps- file with sufficient comments & results.