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1. Introduction 

The SCAPS application discussed in this document uses: 

● SCAPS version 3.3.11 of September 2023, or more recent. 

● the definition file simple pn S-Q.def 

2. What is the problem? 

It can happen – and it did happen! – that a SCAPS user simulates a solar cell and obtains 

unrealistic, even straight out unphysical high efficiency parameters. It can even happen with a 

very simple problem, e.g. with simple pn.def from the SCAPS distribution.  

  

Fig. 1 Left: efficiency  and Right: open circuit voltage Voc simulated 

by SCAPS for the problem file simple pn.def. The defect density Nt was 

varied simultaneously in the p layer and in the n layer, from extremely low (105 

cm-3) to rather high (1015 cm-3). Blue: with a well passivated contact front and 

back (S = 1 cm/s). Red: with an extremely well passivated contact (S = 10-10 

cm/s). The Shockley-Queisser limits for efficiency  and for open circuit 

voltage Voc are indicated, as well as the voltage corresponding to the band gap 

Eg = 1.2 eV of the p and n layer. 

With the other settings of simple pn.def, the efficiency parameters are high, but not 

directly alarmingly high, as is illustrated the blue curves of Fig. 1 for the efficiency  and the 

open circuit voltage Voc. But when we set the surface recombination at the contacts extremely 

low, Sn = 10-10 cm/s at the p-contact, and , Sp = 10-10 cm/s at the n-contact, the user should be 

alarmed, as seen from the red curves in Fig. 1: the Voc value gets unphysically high, even 

above the band gap voltage! And also, both  and Voc are clearly above their Shockley-
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Queisser limit for the band gap value Eg = 1.2 eV (Most SCAPS users are aware of the concept 

of the Shockley-Queisser limit; it will be explained later on). 

So we must conclude: SCAPS can calculate efficiencies  above the theoretical efficiency limit 

SQ of Shockley and Queisser… because a user can define unphysical parameter values! 

Here, the culprit clearly is the low recombination: for the red curves in 1, there is as good as 

no surface recombination at the contacts; there was no interface recombination defined; in 

both layers, two recombination mechanisms were set rigorously to zero (band-to-band 

recombination and Auger recombination); thus, the only recombination present is in the defect 

in the semiconductor layers. Clearly, when the defect density Nt is lower than about 1010 to 

1011 cm-3, the total recombination is unphysically low, giving unphysically high values for  

and for Voc. 

Most recombination mechanisms present in (the SCAPS model of) a solar cell do not have 

physical lower limit, however, one single mechanism has! 

1. Surface recombination at the contacts: An experimentalist would consider a contact with S 

= 1 cm/s as very, very well passivated. However, there is (to my knowledge) no physical 

argument against much lower values of S, even S = 0. 

2. Interface recombination between two semiconductor layers: there is (to my knowledge) no 

physical argument against very low values of Ni, the density of interface states, so there is 

no physics that would prevent a SCAPS user to set Ni = 0 (making such an ideal interface in 

practice could be very difficult/impossible, however). 

3. SCAPS implements three recombination mechanisms in a (semiconductor) layer: 

1. Shockley-Read-Hall (SRH) recombination describes recombination of electrons and holes 

via a defect state. The recombination rate through this mechanism is proportional to the 

defect density Nt. There is (to my knowledge) no physical argument against very low 

values of Nt, so there is no physics that would prevent a SCAPS user to set Nt = 0 (making 

such an ideal semiconductor layer in practice could be very difficult/impossible, however; 

perovskite researchers claim that their materials are performing very well in this respect). 

2. Auger recombination describes the interaction between two conduction band electrons 

and one valence band hole (or two holes and one electron). The mechanism is described 

with two Auger constants Cn and Cp. There is (to my knowledge) no physical argument 

against very low values of Cn and Cp, so there is no physics that would prevent a SCAPS 

user to set Cn = Cp = 0. 

3. Band-to-band recombination, describing the direct recombination of a conduction band 

electron with a valence band hole. When light is emitted in this process (thus emission of 

a photon), the mechanism is also called radiative recombination. It is described by a 

recombination constant Cr (r of radiative)… and there is a physical lower limit to 

recombination via this mechanism: the famous Shockley-Queisser limit, that is further 

discussed below. In most practical materials, SRH recombination will dominate, and 

setting an appropriate value to the band-to-band recombination will not be relevant. For 

this reason (and because an appropriate value of Cr is difficult to find for most materials 

that are considered for photovoltaics), the default value of Cr in SCAPS is zero (as it also is 

for the Auger mechanism Cn = Cp = 0),  

… thus, when a user leaves the default settings for band-to-band and Auger recombination, 

and sets very low values for the other recombination mechanisms (contacts, interfaces, SRH), 

a “Shockley-Queisser accident” can happen in SCAPS! 
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3. The Shockley-Queisser efficiency limit of a solar cell 

The original paper by Shockley and Queisser was published in 1961 [1]. The subject got 

renewed interest, and was further elaborated in the early 80-ties, e.g. [2][3]. These historical 

articles might be difficult to get at nowadays. Fortunately the subject is regularly retaken in 

more recent text books that could be more readily available, e.g. [4][5][6]. And – even more 

fortunately – decent information can also be found on Wiki [7]. 

The starting point is the idealised IV law of a single-junction solar cell 

( ) 0 exp 1 L
qV

J V J J
kT

  
= − −  

  
 ( 1) 

where J0 is the dark current (density) and JL the light current (density), T is the ambient 

temperature, V the voltage over the cell, q the elementary charge and k the Boltzmann 

constant. Shockley and Queisser [1] pointed out that the dark current J0 cannot be arbitrary 

low, but has a physical lower limit. They argue that a cell in the dark is in fact surrounded by 

a black body (BB) at temperature T. This black body surrounding emits radiation, according 

to Planck’s law, to the cell. The cell absorbs the black body photons with energy above the 

bandgap of the solar cell material, that are generating electron-hole (eh) pairs. Those eh pairs 

then recombine (re-emitting photons with the band gap energy). In equilibrium (dark; no 

voltage V = 0), these two mechanisms – absorbing BB photons and re-emitting them by 

recombination – must balance each other. That is the ‘detailed balance principle’. Since a cell 

necessarily has a surrounding, that is always at a temperature T > 0, there is always BB 

radiation coming in from the surrounding, and thus always an equal amount of recombination: 

it cannot be avoided, and hence this constitutes the physical lower limit of recombination.  

The dark current associated with this black body radiation from the surrounding is found to 

be: 
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=  
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  ( 2) 

where c is the velocity of light,  the frequency of the photon and h the Planck constant. The 

photon energy is given below: 

photon energy thus for a photon with energy equal to the band gap: g gh h E= =   ( 3) 

The integration in Eq. (2) is thus for all photons with energy above the band gap Eg. Equation 

(1) and (2) imply that under forward bias (V kT/q), the voltage dependence of the dark 

current is 

( ) 2
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exp 1
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    = =       − 

 

  ( 4) 

A more careful derivation has shown that a better expression for the V-dependence of the dark 

current is [2][7]: 
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  ( 5) 

It is easily shown that in most practical cases the error is negligible when we work with the 

simpler form (4) instead of the more rigorous form (5). 

The Shockley-Queisser theory thus concludes that  

- the recombination cannot become arbitrary low (J0  → 0), but that there is a minimum 

value imposed by the balance between recombination and incoming black body 

radiation from the ambient at temperature T , given by Eq. (4) or (5). 

To derive maximum values for the efficiency parameters from that, Shockley and Queisser 

use some approximations/idealisations to calculate the light current JL, and then, together with 

J0 and the solar cell equation (1), the efficiency parameters. (Some of) these idealisations are: 

- the solar cell has infinite thickness 

- and thus absorbs all incoming light 

- the absorption coefficient () of the solar cell semiconductor is a step function:  = a 

constant value 0 for photon energy h > Eg, and zero, thus  = 0, for h < Eg. And 

also that “0 is large enough” 

- all absorbed photons give rise to one eh pair 

- and all generated eh are collected at the contacts 

- the two above assumptions are sometimes phrased as “the collection efficiency is 

unity (=1)”, meaning that every incident photon contributes with one elementary 

charge q to the current. 

SCAPS can do much better (and more realistic) than these coarse assumptions, and there is no 

need to implement one of these in SCAPS. When a user really wants to check the original 

Shockley-Queisser limit, she/he should chose the input parameters such that these 

assumptions are valid (thickness d  the diffusion length(s), and  the absorption depth 

1/0; absorption model “step at Eg”). 

To ensure that the recombination is the minimum band-to-band recombination given by the 

Shockley-Queisser limit for J0 , Eq. (4), one should 

- set all recombination mechanisms to zero, or at least to a very low value so that band-

to-band recombination (in the absorber, if it is a heterojunction) is the only, or at least 

the dominant mechanism. These mechanisms to be set ‘very low’ or straight-out zero 

are: recombination at the contacts (Sp at the n-contact, Sn at the p-contact); interface 

recombination (Ni at all interfaces), Auger recombination in the semiconductors 

(Auger constants Cn and Cp), defect recombination (SRH recombination) in all defects 

of all semiconductor layers (defect densities Nt). 

- set the band-to-band (or ‘radiative’) recombination in the semiconductor layers to the 

Shockley-Queisser limit. The only parameter to be set is Cr, the radiative 

recombination constant. 

… and that is an essential problem, since the Shockley-Queisser limit is defined as a surface 

property (thus, per unit surface of the solar cell; J0 in Eq. (4) is in Acm-2 or Am-2). And 

radiative recombination in SCAPS (and everywhere) is defined as a volume property (thus, per 
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unit volume of the solar cell; Cr is in cm-3s-1 or m-3s-1). This is because SCAPS solves the 

‘semiconductor equations’ along the depth dimension x of the cell, and thus all inputs and 

outputs of SCAPS are functions of x. This x-dimension simply does not occur in the Shockley-

Queisser theory, it is just assumed that the cell is infinitely, or at least ‘sufficiently’ thick. 

So, we must first set-up a relation between the surface property J0 and the volume property 

Cr. And then we must find suitable fast approximations for the result. 

4. Relating the Shockley-Queisser J0 to the radiative recombination constant Cr 

The band-to-band recombination in SCAPS is given by 

( ) ( )2
band-to-band radiative r iU U C pn n= = −  ( 6) 

where p is the free hole density, n the free electron density and ni the intrinsic carrier density. 

When only this recombination mechanism is present, we can define a life time  and a 

diffusion length L for it. In the case of a p+n cell with an n-type layer with thickness d 

(thickness of the neutral region, thus outside the depletion layer), and with uniform doping 

density NA, one gets: 

0 1
with andn

p p p p
p A r

p p
U L D

N C

−
=  = = 


 ( 7) 

where Dp is the diffusion constant for holes in the n-layer, and pn0 is the equilibrium hole 

density in the n-layer. For this simplified problem, the dark current is given in many text 

books as: 

2
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sinh cosh
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   = 
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 ( 8) 

When the n-contact is perfectly passivated, Sp → 0 and the expression is greatly simplified to 

2

0 tanh
i p

A p p

qn D d
J

N L L

 
=  

 
 

 ( 9) 

(it is quicker, and a nice little exercise, to derive Eq. (9) directly, instead of searching for the 

‘full’ solution (8) and then simplifying…). Considering that we are working at the Shockley-

Queisser limit, the recombination will be very low (but not zero), thus the diffusion length 

will be very long (but not infinite), thus d/Lp → 0, tanh(d/Lp) → d/Lp, and 

2 2 2 2
2

0 2

i p p pi i i
r A i r

A p p A A p p Ap

qn D D Dqn d qn d qn dd
J C N qn d C

N L L N N D NL
= = = = = 


 ( 10) 

(here we used Eq. (7) ). This is an important relation between the surface property J0 and the 

volume property Cr: 

2
0 exp

g
i r V C r

E
J qn d C qdN N C

kT

 
=  = −  

 
 ( 11) 
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where ni has been expressed as a function of the effective density of states in conduction and 

valence band, NC and NV, in the familiar way. Remember the assumptions underlying the 

important Eq. (11): the n-contact is perfectly passivated, the diffusion length is long compared 

to the cell thickness; all recombination is in the quasi-neutral region of the n-layer, not in the 

depletion layer; and further all assumptions of the traditional Shockley diode theory. 

This J0 can be related to the Shockley-Queisser limit for J0, that we call here J0,S-Q ; retaking 

Eq. (2) and (11): 

2
0,S-Q 02

2 1
exp

exp 1
g

g
V C r

Eq
J d J qdN N C

h kTc

kT





 
=   = = −  

   − 
 

  ( 12) 

Before discussing this expression for Cr in the Shockley-Queisser limit, we will simplify it. 

5. Approximate expression for the radiative constant Cr in the S-Q limit 

First, write all variables  in the S-Q expression as the dimensionless parameter z=h/kT (h 

is the photon energy, kT the thermal energy): 

 

( )

2 2

0,S-Q 2

3 2
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2 1

exp 1
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 ( 13) 

The integral can be evaluated analytically when zg  1: 

( )
( ) ( ) ( )

2
2 2exp 2 2 exp

exp 1

z
dz z z dz z z z

z
 − = − + + −

−   ( 14) 

yielding 

( )
( ) ( )

2
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2

2
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2 2 exp
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g g

z
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z

E E E
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 + + −

−

    
 = + + −   
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 ( 15) 

The last approximation holds when Eg/kT 1. In the range of interest, say 1 eV < Eg < 2 eV, 

and with kT  25 mV at room temperature (300 K), the dimensionless parameter Eg/kT is in 

the range 40 to 80, and the error will be of the order of a few percent. We thus obtain from 

Eq. (13) 
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22

0,S-Q 2

23
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h h kT kTc

E EkT
cq

hc kT kT

     
= −    

     

    
=  −    

     

 ( 16) 

This is a convenient expression: since we will express the thermal energy kT in eV, we can 

use the well known value of hc in convenient units: 

4 61240nm.eV = 1.240 10 cm.eV = 1.240 10 m.eVhc − −=    ( 17) 

(use the numerical value in cmeV to obtain J0 in A/cm2 , and the value in meV to obtain J0 

in A/m2 ). Now we only have to insert the approximated value of J0, S-Q in Eq. (11) that relates 

Cr with J0,SQ: 

  

0, S-Q
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 ( 18) 

This final equation is elegant. The only semiconductor properties involved are fundamental 

ones: the band gap Eg (that was expected!), and the density of states in conduction and 

valence band NC and NV… but the presence of the (absorber) layer thickness d could 

disappoint: the Shockley-Queisser limit is a fundamental physical property, so it is ‘ugly’ that 

we see a geometrical parameter, d , appear in Eq. (18) that must be used to implement S-Q in 

SCAPS. But, as said, when we must relate a surface property as J0 to a volume property as Cr, 

we should not be surprised that a property with dimension [length] will appear. We are happy 

that no ’less fundamental’ properties appear, like doping density, mobility, diffusion 

constant… and with compassion with our old computer, that the exponential function exp(-

qEg/kT) has dropped out… 

We checked the validity of Eq. (16) against the tabulated values of J0(Eg) in [6]. In the 

tabulated Eg range of 0.8 to 2.0 eV, the deviation of our approximation (16) is less than 6 %. 

This is largely sufficient, since a maximum deviation of 6% is expected to give a maximum 

deviation of Voc of the order of (kT/q)ln(1.06)  1.4 mV. 

6. Implementation of the Shockley-Queisser limit in SCAPS 

… was done in SCAPS 3.3.11, September 2023.  

Whether or not to take account of the Shockley-Queisser limit is set in the Numerical Panel, 

that is accessible from the orange button ‘Numerical settings’ in the Solar Cell Definition 

Panel. In the ‘recombination block’ bottom right of this panel, a new field is added, see Fig. 2.  
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1. The default is ‘Never set S-Q recombination limit’; then SCAPS works in the traditional 

way, and the user is free to use settings that violate the S-Q limit … and has the 

responsibility to remark this when it happens.  

2. When ‘Always use the S-Q limit…’  is selected, SCAPS will calculate the band-to-band 

recombination constant that corresponds with the S-Q limit, Cr, S-Q, using Eq. (18) above, 

and replace the user set Cr value with this Cr, S-Q, regardless which of the two is the 

greater. The original user-set value of Cr is lost. 

3. When ‘If recombination is too low, set it to S-Q limit’ is selected, SCAPS will calculate Cr, 

S-Q as above. It will leave Cr as is, if Cr > Cr, S-Q, and it will replace Cr with Cr, S-Q if Cr < 

Cr, S-Q; the original user-set value of Cr is then lost. 

 

Fig. 2 Shockley-Queisser settings in the recombination block of the 

Numerical Panel in SCAPS. 

When option 2 or 3 above are set, the S-Q checks are done for a layer, whenever one of the 

parameters d, Eg, NC, NV, Cr of that layer are changed (user interface, batch or script); and for 

the whole cell (all layers), when loading a new definition file (user interface, batch or script), 

when setting a S-Q mode in the Numerical Panel, and when leaving the Cell Definition Panel. 

When a Cr value is replaced by its S-Q limit, the user is warned by a red color in the Layer 

Definition Panel, as shown in Fig. 3. 

  

Fig. 3 Recombination Model block, top right in the Layer Definition 

Panel. When the user set value of Cr is replaced with the Shockley-Queisser 

limit according to Eq. (18), its new value, and the caption are highlighted in 

red. 
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The S-Q setting (never, if needed, or always) is saved in the definition file, if it was not the 

default setting ‘never’, and read and used when it is loaded. When a new definition file with a 

S-Q setting is loaded in an old SCAPS version < 3.3.11, it is of course not read, and no S-Q 

checks are done. When an old definition file is loaded in the new SCAPS >= 3.3.11, the default 

setting ‘never’ will be assumed.  

Finally a warning when using ‘if needed’: when a Cr value was replaced with a calculated Cr, 

S-Q limit, the original Cr is lost. When changing e.g. d in a batch setting, it is possible that a 

next S-Q check will leave the Cr value as it is, but that could be the S-Q limit set in the 

previous batch step, not the Cr value that the user originally has set. This happens when 

increasing d in a batch, that is equivalent to decreasing Cr, S-Q. 

7. SCAPS simulation examples 

7.1 Setting up a suitable def file to test 

We start (of course) with simple pn.def, and do some changes: 

● We set the recombination at the contacts to ‘as good as zero’: Sn = 10-10 cm/s at the p-

contact, and Sp = 10-10 cm/s at the n-contact. 

● We remove the defects in the p-layer and the n-layer, Then there is rigorously no SRH 

recombination 

● We set the absorption model of both semiconductor layers to ‘step at Eg’, to mimic the 

situation of the original paper by Shockley and Queisser.  

● For the absorber p-layer we set 0 = 5105 cm-1; then the absorption depth is 1/ = 0.02 

m, thus (almost) all light will be absorbed in less then one m; this can be considered as 

‘sufficiently high’ 

● For the window n-layer we set 0 = 10-5 cm-1; then (almost) no light will be absorbed 

there, and the n-layer will act as a true window layer, even if its band gap is the same as 

Eg of the absorber, and not a good bit wider. 

● We set the S-Q setting in the Numerical Panel to ‘always’ 

● This file is then saved as simple pn S-Q.def, and distributed with SCAPS 3.3.11 

7.2 Simulating the ‘optimal efficiency graph’ S-Q(Eg), and Voc, S-Q(Eg) 

The SCAPS simulation is shown, and compared with the literature table of [6], in Fig. 4. Note 

that in the SCAPS simulation, we did not set the default spectrum file AM1.5G 1 sun.spe, but 

AM1.5G ed2 1 sun.spe, that contains considerable more wavelength points (2002 wavelengths 

instead of only 120), and thus much better -resolution (and is a little bit slower…). We see 

that the Shockley-Queisser efficiency limit is quite well simulated by SCAPS: the SCAPS curve 

and the literature curve are as good as coinciding, only a very small deviation for narrow band 

gaps < 1 eV, where SCAPS underestimates the literature S-Q with about 0.5 %. This is because 

SCAPS calculates a slightly lower Jsc, but more realistic than the very idealized Shockley-

Queisser estimation of Jsc. The open circuit voltage Voc of SCAPS and the literature coincide 

quite well, but for a systematic difference of 16 to 19 mV (SCAPS Voc lower than literature 

Voc). This is according to our expectations, see the discussion on the approximation of the 

integral in Eq. (15). We conclude that the SCAPS calculation of the Shockley-Queisser limit, 

that involves assumptions and approximations, performs quite well, and is usable in practice. 
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Fig. 4 Shockley-Queisser limits for efficiency  (left) and for open 

circuit voltage Voc (right), as a function of band gap Eg. Red: simulated by 

SCAPS and Blue: as tabulated in literature [6]. In the Voc(Eg) plot (Right), the 

black line shows Voc = Eg/q. 

7.3 Illustration of SCAPS simulations with S-Q setting off or on 

Let us now retake the simulation of Fig. 1, but with the two of the available S-Q settings: 

never, or always. We introduce one defect in each of the semiconductor layers of simple 

pn S-Q.def, thus the same defect for p-layer and n-layer; we use the default defect inserted 

by SCAPS when clicking ‘add a defect’ in the SCAPS Layer Definition Panel. We set up a 

batch/recorder simulation, where we simultaneously var the defect density Nt in the p-layer 

and in the n-layer, from 105 to 1015 cm-3. The result is in Fig. 5. 

  

Fig. 5 Left: efficiency  and Right: open circuit voltage Voc simulated 

by SCAPS for the problem file simple pn S-Q.def. The defect density Nt 

was varied simultaneously in the p layer and in the n layer, from extremely low 

(105 cm-3) to rather high (1015 cm-3), and the surface recombination at the 

contacts was set extremely low (S = 10-10 cm/s); radiative and Auger 

recombination were set at their default value of zero. Blue: with the SCAPS 

setting ‘S-Q limit: always’. Red: with the SCAPS setting ‘S-Q limit: never’. The 

Shockley-Queisser limits for efficiency  and for open circuit voltage Voc are 

indicated, as well as the voltage corresponding to the band gap Eg = 1.2 eV of 

the p and n layer. With the setting ‘S-Q limit: always’, a ‘Shockley-Queisser 

accident’ does not occur! 
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This clearly illustrates that the setting ‘S-Q limit: always’ prevents a ‘Shockley-Queisser 

accident’ to occur when the defect density Nt is set (unrealistically) low. 

7.4 The influence of layer thickness in the SCAPS implementation of S-Q 

Look back to our essential result of Eq. (18), that we repeat here for the ease of reading: 

23

, S-Q
2 1g

r
V C

Ec kT
C

N N hc kT d

   
=   

   
 (18) 

We already stated that we find it rather ‘ugly’ that a fundamental physical limit would 

(seemingly) depend on an easy-to-vary geometrical parameter – the layer thickness d. We 

should formulate this more precisely:  

● It can be accepted that SCAPS replaces the actual material parameter Cr with the Shockley-

Queisser limit Cr, S-Q of Eq.(18), that depends on d.  

● But it could not be accepted that the simulation result of a ‘physical limit’, that is, the IV 

curve, and, derived from it, the efficiency parameters , Voc, Jsc, FF, depend on d . 

… so let us simulate and see what comes out in Fig. 6. 

  

Fig. 6 Varying the p-layer thickness d in simple pn S-Q.def 

(with Nt = 105 cm-3). The ‘SCAPS S-Q limit: always’ option is set. Left: 

efficiency , and Right: Voc. 

First look to Fig. 6 Right, the Voc(d) simulation. The simulated Voc in the Shockley-Queisser 

limit monotonically increases with increasing layer thickness d, what is not expected (or 

desired). But look to the scale: the Voc(d) variation, though clearly systematically, is very 

weak, Voc varies over less than 0.3 mV over the thickness range 1 to 100 m. We could 

conclude that, for practical purposes, the S-Q limit of Voc is essentially independent of layer 

thickness. Bear in mind that even the best experimental cells have Voc that is a few hundred 

(200 to 300) mV lower that the S-Q limit for Voc, thus a variation of a few tenths of a mV is 

not of any practical relevance. 

Then look to Fig. 6 Left, the (d) simulation. The thickness dependence (d) is more 

pronounced than the Voc(d) dependence: in the simulated d-range,  varies from 31.8 % to 

32.05 % : that is somewhat less than 1 % relative (for Voc(d) it was less than 0.03 % relative). 

The higher sensitivity of  to thickness – compared to Voc(d) – should almost entirely be 

attributed to the thickness dependence of Jsc(d): it varies from 38.90 to 39.39 mAcm-2 over the 
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thickness range (not illustrated here), thus somewhat more than 1 % relative. Remember that 

the Jsc calculation (or estimation) of Shockley and Queisser was based on 

assumptions/abbreviations that were listed in page 4 of this document, the most important in 

this context being ‘the cell has infinite thickness’ or ‘is sufficiently thick’. These assumptions 

have nothing to do with physical limits or whatever, they were just there to make an quick 

estimate of Jsc in ‘ideal conditions’. SCAPS, in contrast, calculates Jsc taking all material 

parameters into account, including a finite layer thickness. Though we have set the material 

parameters of our simulated cell to be as good as possible ‘ideal’, a weak Jsc(d) dependence is 

still manifest. Attribute that to the more realistic simulation of SCAPS compared to the very 

idealized estimation of Shockley and Queisser. The really weak thickness dependence of 

Voc(d) in the SCAPS simulation can be seen as a numerical evidence that our assumptions to 

implement the Shockley-Queisser limit, is valid.  

8. SCAPS implementation of the Shockley-Queisser efficiency limit: summary 

o The new SCAPS 3.3.11 (September 2023) implements the Shockley-Queisser limit for 

the efficiency and open circuit voltage of a solar cell. 

o This S-Q limitation can turned off (default) or on. 

o When turned on, the SCAPS S-Q limit implementation prevents ‘Shockley-Queisser 

accidents’. 

o [however, the occurrence of a clear ‘Shockley-Queisser accident’ is an efficient 

warning to the user that the simulation parameters were not realistic, but far too 

idealistic!] 
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