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2. SCAPS version and files used in this document 

The SCAPS application discussed in this document uses: 

● SCAPS version 3.3.06 of September 2017, or more recent. 
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● The following files: 

o Definition files and all-SCAPS files that must be present in the folder [your 

SCAPS]\def: 

 M-S graded NA and epsilon.def 

 M-S graded NA and epsilon with contact barrier.def 

 M-S 6 layers with uniform epsilon.def 

 simple pn for AS defect.def 

o Script files that must be present in the folder [your SCAPS]\script: 

 width of SCL.script 

 

3. Mott-Schottky analysis for ‘graded cells’ 

3.1 Mott-Schottky analysis of the most ideal solar cell 

Consider an ideal, one-sided Shockley p
+
n solar cell, with the junction at x = 0. ‘One-sided’ 

means that the acceptor doping NA of the p
+
 side is much larger than the donor doping ND of 

the n side: NA  ND. Further suppose that all cell properties are ‘non-graded’ (SCAPS 

terminology; this means that Eg, , NA, ND, … do not depend on position x in the cell). And 

that all assumptions for an ‘ideal Shockley diode’ are fulfilled (see all text books), in 

particular here the assumption of ‘abrupt depletion’: the depletion layer will reside completely 

in the n-side, extend from x = 0 to x = W and it will be ‘abrupt’: full depletion (n = 0) with 

constant charge density  = +qND for 0 < x < W, and neutral bulk (n = ND,  = 0) for x > W. 

All text books and most semiconductor physics courses calculate the depletion capacitance Cj 

in this simple case as a function of applied voltage V: 
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(Vbi is the built-in voltage or diffusion voltage, the other symbols have their usual meaning). 

When one measures Cj(V) for reverse (and moderate forward) voltage V, and then makes a 

graph of 1/Cj
2
 versus V (this is called a Mott-Schottky plot), one expects a straight line; the 

intercept with the V axis is Vbi, and from the slope one can deduce the doping density ND: 
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Thus, if the slope of the Mott-Schottky plot is  
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Also, the depletion width W can be deduced from the inverse of the depletion capacitance: 
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where the depletion width W (within the same idealisations) is given by 
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The extraction of the depletion width W(V) and of the doping density ND from a measured 

C(V) curve is called the ‘Mott-Schottky analysis’.  

In the rest of the document we will note the position of the depletion layer edge as xW , and the 

position of the junction as xj. In this example, the junction was at xj=0, and thus xW = W. More 

generally 

, the SCL extends towards the right side of the junction

, the SCL extends towards the left side of the junction

W j

W j

x x W

x x W

 

 
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3.2 Mott-Schottky analysis when the doping density ND(x) is non-uniform 

When we relax the requirement of uniform ND, and allow for an x-dependent doping density 

ND(x), but when all other assumptions of the most ideal case above still hold, in particular that 

the dielectric constant s is non-graded (does not depend on position x), then the results above 

should only altered slightly: 

o the depletion width W(V) is still given by the inverse of the capacitance, Eq. (5). 

o the Mott-Schottky plot is no longer a straight line 

o … and thus one cannot speak of the slope, but of the local slope: apply Eq. (3) to all 

points of the Mott-Schottky plot 

o Eq. (4) still holds locally, thus the local slope of the Mott-Schottky plot yields the 

local doping density: 
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  where the voltage V and the depletion width W are related by Eq. (5). 

The doping density calculated with Eq. (8) is the value at the edge of the depletion layer, thus 

at x = xW. Though many text books mention the results above, most text books leave it to the 

user to do the derivations… The C-V analysis or Mott-Schottky (M-S) analysis implemented 

in SCAPS up to version 3.3.05 of December 2016 is based on Eqs. (5) and (8). 

3.3 M-S analysis with non-uniform doping ND(x) and dielectric constant s(x) 

When also the dielectric constant becomes graded, that is when s(x) depends on position x, 

things becomes more complicated. I have not found text books that treat this case, but I have 

not searched thoroughly. Fortunately, the mathematical manipulations needed to derive Eqs. 
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(5) and (8) in the constant  case can be generalised without too hard difficulties to cover also 

the (x) case. The result is: 

● Eq. (8) for doping density ND(xW) at the depletion edge x = xW still holds, when the 

constant s is replaced with its value s(xW) at the depletion edge: 
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● The relation between capacitance and depletion width, thus Eq. (5), should be replaced 

with: 
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We can write this Eq. (10) is a more ‘eloquent form’ 
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when we introduce the ‘effective dielectric constant’ s,eff(xW) given by 
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We check that s,eff(xW) = s for the uniform  case; and we note that Eq. (12) strongly reminds 

us the well known equation for the series connection of capacitors (summing of 1/C, or of 

1/): this should give confidence in Eqs. (11) and (12). 

From SCAPS 3.3.06 (September 2017) onward, the Mott-Schottky analysis in the program can 

be based on Eqs. (9) and (12), and not only on Eqs. (5) and (8) as it was before. Therefore, the 

Mott-Schottky analysis panel (available from the C-V result panel) has been changed and 

extended. 

4. Mott-Schottky analysis in SCAPS  3.3.06 

The new Mott-Schottky analysis panel is shown in Fig. 1. 
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Fig. 1 The Mott-Schottky analysis panel of SCAPS 3.3.06. 

One can still choose to work with a constant s value: either to compare with a Mott-Schottky 

analysis by a previous SCAPS version or by another programme, or because one is analysing a 

C-V measurement and one does not know the graded s(x). Then the Mott-Schottky analysis 

panel looks as in Fig. 2. 

 

Fig. 2 Mott-Schottky analysis panel when ‘work with a constant s’ is 

selected. 
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One can set any s value, or one can select one of the s values at the layer edges, and use this 

value as a uniform value over the whole cell; then Eqs. (5) and (8) are used (this is how it was 

in SCAPS  3.3.05). 

When one selects ‘N(W) calculation with assumed junction position and side of SCL’ in Fig. 

1, one should select a layer where one assumes the space charge layer (SCL), and the side of 

the layer where one assumes the junction. In  Fig. 1 e.g. one assumes that the junction is 

between layer 1 (‘p-layer) and layer 2 (‘n-layer’), and that the space charge layer extends 

towards the left in layer 1 (‘p-layer’). SCAPS will calculate ND(W) based on the position-

dependent s(x) and Eqs. (9) and (12); the position x where this doping density applies is at a 

distance W to the left from the junction (the interface between layer 1 and 2), in this example. 

New: one can position the junction and the SCL from own judgement, or one can ask SCAPS 

to determine these (a new button). SCAPS uses a very coarse algorithm: 

o it determines the doping type (n or p) of the first layer, only based on the shallow 

doping density; charge in defects are not accounted for. 

o it determines the doping type of the next layer 

o if this is the same as that of the previous layer, continue. 

o if this differs from that of the previous layer, bingo: 

 the junction lies between this layer and the previous one 

 if the net doping density |ND-NA|this layer > |ND-NA|previous layer, then the SCL resides 

in the previous layer; otherwise, in this layer. 

The meaning of the button ‘smooth ’ will be explained later. 

Up to now, the settings in the Mott-Schottky analysis panel only become active from the next 

C-V simulation on, there was no automatic recalculation. In SCAPS  3.3.06, automatic 

recalculation of ND(W) with the new parameters is possible (Fig. 3). 

 

Fig. 3 New options to recalculate or not ND(W) automatically with the 

new settings. The default setting is shown. 

5. Examples and illustrations of the new Mott-Schottky facilities 

5.1 Example: M-S analysis with graded doping density and dielectric constant 

The definition file M-S graded NA and epsilon.def defines a pn
+
 solar cell, where 

two properties of the lower doped p-side are graded: the doping density NA(x) evolves 

exponentially (thus: ‘linearly in a logarithmic plot’) from 10
15

 cm
-3

 at the left contact (x = 0) 

to 10
14

 cm
-3

 at the junction (xj = 10 m), and the (relative) dielectric constant s(x) in the same 

way from 1 at the contact to 10 at the junction; so, at all positions, s(x)NA(x) = 10
15

 cm
-3

 = 

constant. See Fig. 4. 
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Fig. 4 Graded properties of M-S graded NA and epsilon.def. 

Left: doping density; in red, the acceptor density NA(x) in the p layer, in blue, the 

donor density ND in the n
+
 layer. Right: the dielectric constant s(x). 

We launched a SCAPS single shot simulation of C(V), with V running from 0 V to -3 V, step 

0.05 V. The result of the Mott-Schottky analysis is shown in Fig. 5. It is seen that only the full 

analysis with position dependent s(x), thus Eqs. (9) and (12), reproduces the input values of 

NA(x). The blue and magenta points in Fig. 5 show the result with earlier versions SCAPS  

3.3.05; these obviously do not give a reliable result when  is graded! 

 

Fig. 5 Mott-Schottky analysis of M-S graded NA and 

epsilon.def. The solid red line is the input value of NA(W); note that W = 10 

m - x, since the SCL was placed (in the Mott-Schottky analysis panel) in the 

first (p) layer, and the junction at the right side of it, thus at x = 10 m. The 

symbols are the result of the SCAPS M-S analysis: in red with position dependent 

s(x), thus Eqs. (9) and (12); in blue with a constant s = 10 and Eqs. (5) and (8); 

in magenta with a constant s = 1 and Eqs. (5) and (8). 

In Fig. 6, the s values used in the Mott-Schottky analysis are shown. 
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Fig. 6 The s values used by SCAPS in the M-S analysis. Solid red line: 

the input value of s(W); again note that W = 10 m – xW. The red circles are the 

s value used in Eq. (12) to derive NA from the slope of the Mott-Schottky plot. 

The blue squares are the s value used in Eq. (9) to derive W from the inverse 

1/Cj of the capacitance. 

5.2 Extending the range of the C-V profiling 

It is clear from Fig. 5 that the C-V profiling (thus the NA(W) or NA(x) profile) in this case only 

scans a small fraction of the p layer. To expand Fig. 5 to the left (narrower depletion width, 

towards higher x), one should measure/simulate for more positive voltages. But the forward 

voltage will be limited to typically 0.3 – 0.5 V, because the diffusion capacitance overwhelms 

the depletion capacitance at higher forward voltage. To expand Fig. 5 to the right (thicker 

depletion width, towards lower x), one should measure/simulate for more negative voltages, 

thus higher reverse voltage. This will be limited by cell breakdown in a measurement, and 

probably by convergence failure in a SCAPS simulation (the problem above converges until V 

= -9.0 V, where W = 3.7 m and x = 6.3 m). 

When there is a contact barrier present at the left contact, the C-V profiling range sometimes 

can be extended elegantly. The principle was illustrated in e.g. 

M. Burgelman, P. Nollet, S. Degrave, “Electronic behaviour of thin-film CdTe solar cells”, Applied 

Physics A - Materials Science & Processing, 69/2 149-153 (1999). 

M-S graded NA and epsilon with contact barrier.def is based on the previous 

def file M-S graded NA and epsilon.def, but: 

o the thickness of the p layer was reduced from 10 m to 4 m 

o the grading profiles of NA(x) and s(x) were changed from logarithmic to linear. 

o a hole contact barrier of 0.55 eV (with respect to EF) or 0.2835 eV (with respect to 

EVbulk) was defined at the left contact 

o the simulation was done at 330 K and not 300 K 

2

4

6

8

1.0 2.0 3.0 4.0 5.0

s(W)

W, m

epsilon to determine NA (Eq. 7)

epsilon_eff to determine W (Eq. 10)
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The C-V simulation and the resulting Mott-Schottky plot are shown in Fig. 7. Different parts 

of the C-V curve are determined by different parts of the cell, as explained in the figure 

caption. 

  

Fig. 7 SCAPS C-V simulation of M-S graded NA and epsilon 

with contact barrier.def. The complicated C-V behaviour is 

explained in the reference given in the text. For x < 0.3 V, the capacitance is 

determined by the junction depletion capacitance Cj; this junction is at xj = 4 m. 

For V > 0.55 V, the capacitance is determined by the contact capacitance Cc, and 

the ‘junction’ in the SCAPS analysis should be placed at xj = 0. 

We thus do the Mott-Schottky analysis twice:  

1. Once with V = 0.20 V  -3.0 V, step 0.05 V. The junction is placed at the p-n
+
 interface 

(xj = 4 m), and the SCL is positioned in the p layer; thus xW = 4 m - W: red curve in 

Fig. 8. 

2. And then with V = 0.58 V  0.98 V, step0.02 V (divergence from +1 V on ). The 

junction is placed at the left contact (xj = 0), and the SCL is in the p layer; thus xW  = W: 

blue curve in Fig. 8. 

   

Fig. 8 Mott-Schottky analysis of M-S graded NA and epsilon 

with contact barrier.def in two parts, see text. Note that the contact-

originated part (blue) yields -NA instead of +NA, hence the abs-button (new in 

SCAPS 3.3.06) should be checked. Also note: because a same W value would 

point to different x values (see text), the new option ‘absolute position x’ should 

be selected. 

The deviation between the estimated NA(x) near the contact (> 10
15

 cm
-3

; blue curve in  Fig. 8) 

and the input value (linearly decreasing from 10
15 

cm
-3

 at the contact to 10
14

 cm
-3

 at the 
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junction) is because the theory outlined in the referenced paper is only valid far away from the 

‘artefacts’ (the single or (here) double maximum in the C-V curve), and we started at 0.58 V, 

rather close to the second maximum. Fig. 8 is a nice illustration of the novelties in the Mott-

Schottky analysis in SCAPS 3.3.06 (but we admit that some playing with the parameters was 

needed to get the illustration so nice). 

5.3 M-S analysis with several layers with uniform, but different s 

Now load the definition file M-S 6 layers with uniform epsilon.def. It is based on the 

first file M-S graded NA and epsilon.def, but: 

o the doping density in the p layer is uniform NA = 10
15 

cm
-3

. 

o the p layer is split into 6 sublayers, 4 of 0.25 m thickness and 2 of 0.1 m thickness, 

and different but uniform s within each layer: see Fig. 9.  

To do the M-S analysis of the simulated C-V, the junction should be placed at xj  = 1.2 m, 

between layer 6 and 7. When we want to place the SCL in the p layers (because we know that 

the n
+
 layer is much stronger doped than all p layers), SCAPS  3.3.05 offered no choice than 

to place the SCP in the 6
th

 layer, thus 1.1 m < x < 1.2 m, with s = 10. But what if the SCL 

would be wider than 0.1 m, and thus would extend into the 5
th

, the 4
th

, … layer? Now, in 

SCAPS 3.3.06, this is handled properly: SCAPS will use the general M-S analysis (Eqs. (9) and 

(12) ), and thus take account of the actual s(x) value at all positions in each of the layers. 

 

Fig. 9 The evolution of s in the layers of M-S 6 layers with 

uniform epsilon.def. The pn junction is at x= 1.20 m, between the 6
th

 

layer (p type) and the 7
th

 layer (n
+
 type). 

… but will it work properly? 

The settings of the Mott-Schottky analysis panel (Fig. 1) are: ‘N(W) calculation with assumed 

junction position and side of SCL’; click ‘Let SCAPS determine the junction & SCL side’, or 

directly select the right side of layer #6 named ‘p eps=10’. And in the N(W) plot in the C-V 

panel, select as abscissa (horizontal axis) ‘(assumed) absolute position x of the depletion 

edge’; ‘assumed’ means that x is calculated with the assumed position of the junction and side 

of the SCL, in this case: xW  = 1.2 m - W. The NA(xW) result is shown in Fig. 10. The red 

curve is when NA(W) was determined with the true value of s(xW); the blue curve will be 

discussed later. 
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Fig. 10 Mott-Schottky analysis of M-S 6 layers with uniform 

epsilon.def and the settings described in the text. Red: NA calculated with 

the true s (W) from Eq. (9). Blue: with s(W) first smoothed by Eq. (16), and 

then inserted in Eq. (12) or (15). 

Because s(x) has discontinuities at the layer interfaces x = 0.25, 0.50, 0.75, 1.00 and 1.10 m, 

also NA(x) will show these discontinuities (when we assume that the C-V curve is smooth, thus 

without discontinuities in its derivative to the voltage). And indeed, the discontinuities (a 

jump with a factor of 2) is seen at x = 0.25 m (s jumps from 1 to 2) and at x = 0.50 m (s 

jumps from 2 to 4); the result is the ugly, spiky red curve of Fig. 10 instead of a nice flat line 

at the input value NA = 10
15

 cm
-3

: this is not satisfying at all. 

This is not due to errors or imperfections in Eq. (9); this equations is generally valid (or 

graded NA(x) and s(x), discontinuities allowed), but only within the abrupt depletion 

approximation. However, SCAPS does not use any such approximations to simulate the IV, C-

V… curves; it solves the full set of semiconductor equations. It turns out that the abrupt 

depletion is only a very coarse approximation of the reality, see Fig. 11 where the carrier 

densities n and p and the total charge density  are plotted for simple pn.def from the 

standard SCAPS distribution. 
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Fig. 11 About the abruptness of the depletion layer. SCAPS simulation of 

simple pn.def: p-layer = (2m, 10
15

 cm
-3

) and n-layer = (0.5 m, 10
17 

cm
-3

). Left: the densities n, p and || on a logarithmic scale; only the p-layer is 

shown. Right: p and || on a linear scale; the p-layer is shown only until x = 1.8 

m to hide the ‘inversion layer’ near the junction at xj  = 2 m, where ||  NA = 

10
15

 cm
-3

; the abrupt depletion approximation for (x) is shown in a dashed line, 

with the depletion edge at xW  = 1.094 m (W = 0.906 m). 

Two deviations from the ideal ‘text book’ abrupt depletion behaviour are obvious: 

o the ‘inversion layer’ in the p region near the junction (thus 1.9 m < x < 2 m) where 

electrons from the neighbouring n
+
 layer are flooding into the p region: n ~ |/q|  p. 

A closer study (more advanced, more difficult text books , or numerical 

experiments e.g. in SCAPS ) learns that this inversion layer has no influence at all, 

neither on the IV characteristics nor at the C-V and C-f characteristics. 

o the depletion edge is not abrupt at all! So, there is some judgement involved to 

decide what would be the exact position of the depletion edge (since there is no sharp 

edge). A convenient position is at xW where p(xW) = |(xW)/q| = NA/2, see Fig. 11, 

right. 

 One observes that the transition from neutral bulk to full depletion is rather gradual; it turns 

out that the transition width is of the order of one Debye length LD left and one LD right of the 

depletion edge as defined above. Refer to your courses/text books for the definition of LD 

(‘extrinsic Debye length in a homogeneous p-layer’): 
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The depletion width W, in the abrupt depletion approximation and with the idealisations of 

section 3.1, thus given by Eq. (6), turns out to be a small multiple of the Debye length: 
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Take e.g. equilibrium (V = 0), room temperature (kT/q = 25 mV) and a typical Vbi = 0.8 V, 

then W ~ 8LD: the depletion width is thus not that much larger than the transition width 2LD. 

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

1.E+14

1.E+15

1.E+16

1.E+17

0.0 0.5 1.0 1.5 2.0

n,p and ||, cm-3

x, m

electron density

hole density

|charge density|

0.0E+00

1.0E+14

2.0E+14

3.0E+14

4.0E+14

5.0E+14

6.0E+14

7.0E+14

8.0E+14

9.0E+14

1.0E+15

1.1E+15

0.6 0.8 1.0 1.2 1.4 1.6 1.8

n,p and ||, cm-3

x, m

hole density

|charge density|

Charge density abrupt depletion



13 

 

At forward voltage this is even worse. Only at large reverse voltages the transition width is 

negligible against the depletion width, and the depletion edge can be considered as ‘abrupt’. 

Our equation Eq. (9) to extract NA(x) from a C-V measurement is based on abrupt depletion. 

But the depletion is gradual over a distance of about two Debye lengths. Thus it makes sense 

not to use the exact s(W) in Eq. (9), but an s value that is smoothed out over a range of about 

xW - LD to xW + LD. So, in the SCAPS Mott-Schottky analysis panel, there is now an option to 

‘smooth s’. Then Eq. (9) is replaced with 

 
   0 ,smoothed

1 2

slope
D W

s W

N x
V W q x


 

   
 (15) 

with s,smoothed
 
given by 

 

 
2

,smoothed 2

exp

exp

W D

W D

W D

W D

x aL

W
s

Dx aL
s W x aL

W

Dx aL

x x
x b dx

L
x

x x
b dx

L









  
    
   

 
  
   
   





 (16) 

Thus, we smooth out with a Gaussian weight function, from a position aLD left of the 

depletion edge to a position the same distance right of the depletion edge. As of now (15-10-

2017), the smoothing parameters used are a = 1.0 and b = 2.0. These values are not (yet?) 

accessible by the user; I am still experimenting with it. 

In the blue curve of Fig. 10, s(x) was smoothed by Eq. (16) before use in Eq. (15). This result 

may still look rather ugly – it is still not at all a flat line at NA = 10
15

 cm
-3

 – but it is already 

much better then the red result with unsmoothed s. In fact the relative error is < 15 %... and 

15 % accuracy is not so bad for a doping density. 

5.4 About the calculation of depletion width W 

The reader has noted that so far we used two definitions, or two ways to calculate, the 

depletion layer width W, or the: 

o the depletion edge is at position xW where the depletion space charge density has 

fallen to half of its value in the ‘uniform depletion layer’: p(xW) = |(xW)/q| = NA/2. It 

would be more complicated when the doping density NA(x) were graded: then p(xW) 

= |(xW)/q| = NA(xW)/2 should be used.  

o the depletion width is determined by the inverse of the depletion capacitance, thus by 

1/Cj, Eq. (5) or the more general Eq. (11). These equations are derived assuming an 

abrupt depletion layer, not a gradual one. 

… but are these two definitions leading to the same result when there is a gradual transition 

from neutral bulk to the fully depleted SCL, as is the reality? SCAPS can give the answer, 

using the powerful facilities of the SCAPS script. So, load the script file width of 

SCL.script and run it. The script is annotated with plenty of comments, but even so, 

scripting in SCAPS is not so easy and intuitive as the basic, interactive use of the program; this 

script might serve as an example of SCAPS scripting. The result (the script graphs) are shown 
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in Fig. 12. The agreement between the two definitions/algorithms for W is excellent! In the 

script, an adaption was made to the problem simple pn.def: the n layer was more heavily 

doped (10
18

 instead of 10
17

 cm
-3

) to make the junction more extrinsic (pn
+
-type); and the p-

layer thickness was varied together with its doping density NA, to accommodate for the 

depletion width W and for some neutral bulk region (it should be there, but it must not be too 

thick compared to W, to avoid convergence problems). 

 

Fig. 12 Result of the SCAPS script width of SCL.script: W (in 

m) vs. NA (in cm
-3

). The problem file is based on simple pn.def, see text. 

The SCL width W is once calculated from p(xW) = NA/2 (red curve) and once 

from s0/Cj (blue curve): both are practically coinciding. The green curve is the 

relative difference between the two W’s; it is a few % and even below 1 % over 

most of the doping range. 

6. Novelties in the SCAPS ac-panel 

After a SCAPS simulation of capacitance (C-V or C-f simulation), the ac-panel is accessible to 

illustrate the ac behaviour (or small-signal behaviour) of the current densities (electrons, 

holes, displacement and total) (left side of the ac-panel), and the potential/energy levels 

(electrostatic potential, electron and hole Fermi level) (right side of the ac-panel). All these 

properties have complex values, and thus there was an amplitude graph (e.g. |n| ) at the top of 

the ac-panel, and a graph of the argument or phase (e.g. arg(n) ) at the bottom of the ac-panel. 

Sometimes a view of the real and imaginary part is more informative/acquainted by the user 

than a view of amplitude/phase. And sometimes a graph of the (ac) charrier densities 

(electrons, holes, all defects together, total) would also be desirable. 

All this is now implemented in SCAPS 3.3.06. Both for the left and for the right side of the ac-

panel, the user can opt for 6 sets of graphs, see Fig. 13. 
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Fig. 13 New graph options in the ac-panel of SCAPS 3.3.06 

In this way, one can display e.g. the two representations of the potentials (thus || and arg() 

left, and Re() and Im() right) in Fig. 14. Or a view of the currents left and of the carrier 

densities right as in Fig. 15.  

 

Fig. 14 Example of an ac-panel view: the (ac-component or small signal 

component of) the electric potential , and the Fermi levels EFn and EFp. Top 

left the amplitudes ||…; bottom left the arguments arg()…; top right the real 

parts Re()…; and bottom right the imaginary parts Im(). The problem is 

simple pn.def, and the calculation is at V = 0 and f = 10 kHz. 
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Fig. 15 Example of an ac-panel view. Left: the (ac-component or small 

signal component of) the current densities Jn, Jp, Jdispl and Jtot; the amplitudes in 

the top left graph, the phases in the bottom left graph. Right: the carrier densities 

n, p and tot/q; the real part top right, the imaginary part bottom right. The 

problem is simple pn.def, and the calculation is at V = 0 and f = 10 kHz. 

Note that the amplitude of the (ac-part of the) carrier densities is plotted linearly 

(logarithmically would be more customarily). The total charge density in green is obscuring 

the electron and hole density where they practically coincide (yes, I should still work a bit on 

the aesthetics of the graphs…). The small hump around x = 1.1 m comes from the ac hole 

density p , and the higher, narrower peak at x = 2 m from the ac electron density n . These 

two humps/peaks illustrate the ‘capacitance action’ (the adaption of ac carrier densities to the 

ac signal). Playing somewhat with the SCAPS parameters (the voltage of the work point) 

confirms what our physical intuition already knows: the adaption of electrons is always (= 

with varying V) at the same place x = xj = 2 m; and the position of ac hole adaption varies 

with bias voltage: further away from the junction for higher reverse bias. Plots like Fig. 15 

can be used to point out where precisely the ‘capacitance action’ is taking place: at a contact? 

at some interface? in which layer?... but be warned, in complicated cases it can be very … 

complicated to interpret… 

7. SCAPS Admittance Analysis (AS) of C-f simulations or measurements 

The purpose of Admittance Analysis (AS) is to determine the defect density as a function of 

trap energy Nt(Et) from a set of C(f, T) simulations or measurements; and to do so for each 

defect assumedly present in the cell. This topic is very advanced, and the user definitely 

should consult and closely follow the dedicated literature. As a start point, the article 

referenced below can be used, with other work referenced therein. 
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K. Decock, S. Khelifi, S. Buecheler, F. Pianezzi, A.N. Tiwari, M. Burgelman, “Defect distributions in 

thin film solar cells deduced from admittance measurements under different bias voltages”, Journal of 

Applied Physics, 110/6, 063722 (2011). 

The notation and terminology of this article are closely followed in the SCAPS Admittance 

Analysis Panel. To set-up the parameters and assumptions used to display the AS results, the 

same panel is used as for setting up the Mott-Schottky analysis: the “Admittance 

(Capacitance) Analysis Panel”. The top part of that panel is relevant to the M-S analysis and 

was already discussed and shown in Fig. 1. The bottom part of that panel is shown in Fig. 16. 

 

Fig. 16 The AS-part of the Admittance (Capacitance) Analysis Set-up 

Panel. 

Here the defect for which the Nt(Et) will be determined should be identified: 

 The layer containing the defect should be selected in the M-S part of the set-up 

panel, see Fig. 1. Information on the side of the selected layer where the junction 

was assumed, and of the (shallow!) doping type (n or p) of the selected layer is 

displayed. 

 The defect number in the selected layer. As information the charge type is 

displayed (donor, acceptor, double donor or acceptor, amphoteric, user defined 

multivalent). A warning is given when the selected defect is a “neutral defect”, 

that cannot contribute to capacitance. 

 The level of the defect, if a multilevel defect was selected. 

 The carrier type (e or h) that assumedly has the dominant contribution to the 

capacitance. 

7.1 Terminology and method to determine Nt(Et): overview 

To interpret the AS result panel, we briefly summarise the terminology and method used.  

o From the C-f measurement, the “derivative” is calculated (the angular frequency  = 

2f where f is the frequency): 

 "derivative"
log log

dC dC dC dC
f

d df d d f
     

 
 (17) 

o The trap density is calculated from the ‘derivative’. The equation used depends on 

assumptions on band bending in the space charge layer SCL. In the most simple case 

of ‘constant-linear’ band bending, one gets (see referenced article) 

2

1 bi
t

V V dC
N

kT q dq W

  
    

 
 (18) 
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o More complicated assumptions for the band bending yield (slightly) more 

complicated equations, see article. 

o This trap density applies at an energy level E that has a different meaning and is 

calculated differently, depending on the assumed carrier type for the capacitance 

contribution of the defect under study: 

esc,p

esc,n

2
ln hole dominated

2
ln electron dominated

t V

C t

E E E kT

E E E kT





 
    

 

 
    

 

 (19) 

o To establish this relation Eq. (19) between (assumed) energy E and measurement 

frequency f or angular frequency  = 2f, two escape frequencies were defined: 

esc,p , esc,n ,andp th p V n th n Cv N v N       (20) 

o The esc of the dominant carrier (for the capacitance) is often called ‘the escape 

frequency’ 0. Since in Eq. (20) vth is proportional to T
1/2

, and NV and NV toT
3/2

, the 

escape frequency 0 is proportional to T
2
, assuming that the capture cross sections  

do not depend on temperature. So, the temperature dependence of 0(T) is 

conveniently written as: 

 
2

0
0 escape frequency

2

T
T


   (21) 

o here  is the (lower case) greek letter ‘ksi’. Hence 0 is named ‘ksi_0’ in the input 

field of the SCAPS AS results panel. 

7.2 Determination of Nt(Et) from one C-f measurement only? Rather from an extended 

set of C(f,T) measurements! 

The method outlined above allows to determine the trap distribution Nt(Et):  

o calculate the escape frequency either as esc,p or esc,n with Eq. (20), depending on 

the setting e or h in the AS set-up panel, or directly from Eq. (21) with the value of 0 

in the AS result panel. 

o Convert the (angular) frequency range  of the measurements into an energy range 

E with Eq. (19) 

o Convert the (derivative of) the measured capacitance to a trap density (e.g. in 

cm
-3

eV
-1

) with Eq. (18) or a more elaborate equation according to the settings in the 

AS result panel (setting ‘band type’). 

o SCAPS does all this for you in the AS result panel 

… and there is the trap distribution Nt(Et)! 

But look what happens when one is doing so for all C-f curves of a set of C(f, T) 

measurements. We take the definition file simple pn for AS defect.def, that is 

derived from the good old simple pn.def, with changes: defect 1 (the only defect) of the 

p-layer is of donor type, single level at EV + 0.40 eV and with n = p = 10
-14

 cm
2
. The Nt(Et) 
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distribution derived by the SCAPS AS facility from a set of C(f, T) measurements is shown in 

Fig. 17. 

  

Fig. 17 AS analysis: trap density Nt(Et) of problem simple pn for 

AS defect.def. The C-f simulations were run from 10
-2

 Hz to 10
7
 Hz with 

20 points/decade. The temperature was varied from 300 K to 150 K, step 10 K. 

Left: with the escape frequency calculated from the definition file (click the 

button in the AS result panel, this yields 0 = 2.510
11

 Hz). Right: with 0 set 

(empirically) to 4.0510
12

 Hz. 

Be not surprised that one sees a Gaussian-like distribution instead of a Dirac pulse 

distribution, that corresponds to a single level: theory in the cited article predicts a full-width-

at-half-maximum with of the obtained ‘apparent’ Nt(Et) distribution of FWHM = kT 

ln[(1+2)/(1-2)] ~ 1.76 kT; this is about 45 eV at 300 K and 23 eV at 150 K. 

However, it is rather unacceptable that the Nt(Et) distribution seems to shift with temperature: 

the peak energy in Fig. 17 Left, interpreted as the trap energy Et,  shifts from EV + 0.320 eV at 

150 K to EV + 0.353 eV at 300 K… while we know that the trap energy position in the 

definition file is fixed at EV + 0.40 eV. We get a better result when we vary the escape 

frequency 0 or the parameter 0 in the AS result panel empirically. With 0 = 410
12

 Hz, we 

get Fig. 17 Right: the apparent trap energy Et now is rather constant when T is varied between 

150 K and 300 K, and yields Et = EV + 0.39 eV, almost the input value (10 meV error only). 

Though this result is satisfying, the method we used to obtain it (trial and error variation of 0) 

is not very satisfying (though in practice often faster than the ‘decent’ method described 

below ). 

7.3 Determination of the trap energy Et by an ‘Arrhenius plot of 0’ 

From a simulated or measured C-f curve, one characteristic frequency f0 or angular frequency 

0 = 2f0 per defect can in principle be determined. This is based on the fact that several 

phenomena, if present alone, give rise to the same frequency dependence of the capacitance 

        
2 2
0 0

0 02 2 2 2
0 0

or
f

C C C C C f C C C
f f

   


      
  

 (22) 
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Sometimes, this f0 (or 0) is called the (angular) frequency of the inflection point, or short, the 

‘inflection frequency’. When one would deduce 0 from an inflection point (not advised!), 

some remarks: 

o It is always difficult to position an inflection point on a curve, the result is often 

inaccurate. 

o If more than one defect is present, and thus several contributions as in Eq. (22) are 

summed, it will be almost impossible (and always inaccurate) to resolve and position 

all inflection points. 

o The C-f curve given by Eq. (22) indeed has an inflection point… not at frequency f0 

but at frequency f03 ! This is sometimes mentioned (and used as definition for f0 or 

0 in older articles). But a linear-linear C-f plot is very impractical when the 

frequency range extends over several decades, as usually is the case. 

o So, one better works with a linear-logarithmic plot, thus C vs. logf or log. This plot 

has (in the case of Eq. (22) ) an inflection point… at exactly f0 or 0!  

o More recent articles thus call 0 the ‘(angular) inflection frequency’, often without 

specifying that it is seen and determined in a C-log plot. 

It is better to deduce f0 or 0 from the ‘derivative of the capacitance plot’. Also here, the 

authors mean the derivative in the C-logf or C-log plot, and not the derivative in the C-f or 

C- plot, even when they do not state so explicitly. Thus:  

  0 0derivative , derivative maximum at  or 
log

dC dC dC
f f f

d d df
       

 
 (23) 

This ‘derivative’ has a maximum (of the absolute value) at exactly f0 or 0; and often it is a 

sharp maximum, thus easy and precise to determine; in a lin-log plot, the maximum is usually 

sharper and thus better to determine than in a log-log plot. The statements above are 

illustrated for simple pn for AS defect.def in Fig. 18 and Fig. 19. 

  

Fig. 18 C-f simulation of simple pn for AS defect.def with 

varying T (see caption of Fig. 17). Left: a lin-lin plot,thus C(f). Right: a lin-log 

plot, thus  C(logf). 
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Fig. 19 Simulation of simple pn for AS defect.def with 

varying T (see caption of Fig. 17): The ‘derivative’ |dC/d| in the AS panel, 

Left in a log-log plot, Right in a lin-log plot. 

One thus should determine 0(T), preferably from simulations or measurements processed 

and presented as in Fig. 19 Right. A direct ‘Arrhenius plot’ would be to plot ln(0) vs. 1/T. 

From theory (see cited article) we know that a straight line would be obtained when we plot 

0/T
2
 instead of just 0. A ‘suitable Arrhenius plot’ is then to make a plot: 

 ordinate or y-axis: 0/T
2
 on a logarithmic scale 

 abscissa or x-axis: 1000 Kelvin/T; this has the advantage that it is dimensionless, 

and leads to ‘comfortable numbers’: e.g. room temperature is at 3.333 

This is shown in Fig. 20. 
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Fig. 20 ‘Suitable’ Arrhenius plot of f0, the ‘inflection frequency’ or ‘peak 

frequency’ of the ‘derivative’ (see text for this terminology). From the slope, an 

activation energy of 0.395 eV is deduced, meaning that the trap level is at EV + 

0.395 eV (holes assumed) or EC – 0.395 eV (electrons assumed). From the 

intercept with the vertical axis, 0 = 210
7
 Hz/K

2
 is deduced. 

The activation energy deduced from this Arrhenius plot is Ea = 0.395 eV. It is an excellent 

estimation of the trap energy input value of 0.40 eV. The 0 value derived from the intercept 

with the vertical axis deviates from the value we found by trial and error in the previous 

section; one should realise there is much more inaccuracy in determining an intercept by 

extrapolation, than a slope. 

7.4 AS analysis of real measurements 

AS analysis of real C(f, T) measurements is a lot more complicated than could be thought 

after seeing the nicely ‘constructed example’ of the previous sections. A few thoughts: 

o Since numerical derivation is involved, the C-f measurements or simulations should 

contain enough frequency points; 10 points per decade seems a minimum 

o Numerical derivation of measurement data is always inaccurate: the measurement 

could contain stochastic measurements errors, causing oscillations in the derivative. 

Often, a set of C(f, T) measurement can take advantage of a smart smoothing of the 

data before processing (involving taking the derivative).  

o In a real cell that is measured, one cannot know in advantage how many different 

defects are involved/play a role. An indication can be the number of maxima seen in 

the |derivative| of a single C-f curve. But some defects could only be visible (as a 

maximum) at the lower temperatures of the measurement T-range, others at the 

higher temperatures. And in general, it could be quite problematic to follow a 
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specific maximum, attributed to a specific defect number) over the different C(f, T) 

measurements. In any case, it is advantageous to measure with small T intervals. 

o For each maximum seen, one can, if all goes well, draw the suitable Arrhenius plot, 

and thus derive the (Ea, 0) values of this defect. But the method, and thus the SCAPS 

AS panel, cannot tell you in which layer the defects are located, and if the 

charge/discharge process of the defects are by electrons or holes: that is 

interpretation (guess?) work for the user. All extra information about defects will be 

welcome! 

o The text above should be considered as a tutorial for beginners entering the field of 

defect research in solar cells, nothing more. Consult and study the vast (and not 

always easy) literature! 

8. New script commands in SCAPS 3.3.06 

The SCAPS script has been extended to handle the new functionalities in the Mott-Schottky 

analysis panel, see Table 1. 

Table 1 SCAPS script commands associated to the Mott-Schottky analysis 

panel. Some were already existing, others are new in SCAPS 3.3.06. 

  Value 

set numerical.CV-analysis.NW-mode.constant_epsilon  

set numerical.CV-analysis.NW-mode.actual_epsilon  

set numerical.CV-analysis.constant_epsilon s value 

set numerical.CV-analysis.layer layer number 

set numerical.CV-analysis.side + = right, - = left 

set numerical.CV-analysis.points for numerical 

derivation 

d(1/C
2
)/dV 

set numerical.CV-analysis.order_middle 

set numerical.CV-analysis.order_edge 

set numerical.Cf-analysis.layer same as … CV-

analysis… 

set numerical.Cf-analysis.defect defect number 

set numerical.Cf-analysis.level level number 

set numerical.Cf-analysis.eh-type.electrons  

set numerical.Cf-analysis.eh-type.holes  

 

 


