
 1

SCAPS Version 3.0.02, 17 May 2011

This manual describes the available script commands in SCAPS 3.0.02. Most of the commands
present here were already present in version 2.9.3. Unfortunately, the script version of 2.9.3 is
not entirely compatible with this version. The most prominent incompatibility’s is the fact that
the dll has changed its prototype and that extra vectors have been added. An entire overview
is given in the SCAPS 3.0.00 add-on manual. The additions in SCAPS 3.0.02 are set in blue.

The SCAPS script editor

SCAPS offers a script editor to edit a new script, or load and save an existing script (Ctrl-s
works to save the script with the existing filename, without confirmation), see Fig. 1. Even if
this script editor is still somewhat rudimentary, it is a very useful tool to develop and adapt
SCAPS scripts.

Figure 1: Screen shot of the SCAPS script editor. When placing the cursor in an existing line of a script (as
shown), the components of this command line (thus: the command, the arguments and the value) are shown in
the six blocks at the bottom of the panel. When typing a new line in a script, the parts of the command line
available so far are proposed in these blocks, and can be selected and placed in the editor box of the script.

SCAPS script commands

general
The SCAPS-directory, this is where the scaps.exe file resides, is noted as scaps\.
A comment line in a script is a line that cannot be interpreted as a command line. E.g. any line
starting with a punctuation character is treated as comment. You can also add comment at the

Cursor position

 2

end of a command line. The Script Editor will recognize such in-line comment when it starts
with a double punctuation, except ‘]]’ (thus e.g. ‘//’ or ‘!!’ or ‘>>’ are OK …).
All command lines in a script consist of up to three parts:
command argument value

where command and argument are reserved words, and value is free with some
restrictions, depending on the command line. The three components of the command line are
separated by whitespace (spaces, tabs,..), but should be on one line. They are not case-
sensitive (upper case or lower case letters do not matter).
At this moment, the possible commands are:

SCAPS script commands
load action set math calculate

save clear get loop run

 show rundll

 plot runsystem

Whilst processing a script, SCAPS internally maintains a few variables, as specified in the table
below.
The user can use these variables in set and get commands, and some are used internally in
a loop. Also, these variables are passed to an external dll function, that can be made by the
user. In this list (and in this entire manual) {m} should be replaced by x, y, z, u, v, w, in order
to get expressions like xvector, wvector, uvalue, ny , nv, zname, uindex…

name C-type default value max value
{m}value double 0 2 scalar values xvalue

and yvalue are now
extended with zvalue,
…, wvalue in
SCAPS3.0.02

{m}vector array of double 0

n{m} int 0

{m}name character string empty max size 256 bytes
{m}index int 0 6 new indices added

in SCAPS3.0.02
loopcounter int 0
maxiteration int 25
looperror double 1E30

maxerror double 1E-3

status int 0

mode int 0

 3

filename character string empty max size 256 bytes

load – commands
Syntax:
load argument value

Where load is the reserved command word, argument can take 8 reserved values, and
value is a filename, without path. The filename can contain spaces. The files are supposed
to reside in their default directories. There is (exceptionally) some freedom allowed in the
name of the argument: just writing definition, action, batch, record,

allscaps, spectrum or generation will also do.

command argument value default-directory
load definitionfile a filename scaps\def

load actionlistfile a filename scaps\def

load batchsettingsfile a filename scaps\bdf

load recordersettingsfile a filename scaps\bdf

load allscapssettingsfile a filename scaps\def

load spectrumfile a filename scaps\spectrum

load generationfile a filename scaps\generation

load singleshotbatch scaps\bdf

The last argument (load singleshotbatch) is slightly deviating from the others as it
does not take a value. The purpose of this command is to work together with the command
get recorder. When load singleshotbatch is called the batch settings file
singleshotbatch.sbf is loaded. This file sets a batch calculation with one calculation at the
working point temperature. So it enables you to perform a recording of a singleshot
calculation. This option is very useful as a lot of properties can only be accessed in the script
through performing a record calculation and taking the value via get recorder. In this
way you can access e.g. the electrical field distribution in the structure and do calculations
with it.
The temperature in this batch is set to the working point value when the command load
singleshotbatch is called. Hence when you vary the temperature afterwards you should
repeat the command again.

save – commands
Syntax:
save argument value

Where save is the reserved command word, argument has a compound syntax; the first
part can take 3 reserved values (settings, results or graphs). The value is a

 4

filename, without path. The filename can contain spaces. The files are supposed to reside in
their default directories.

command argument value default-directory
save scriptvariables a filename scaps\results

save settings.definitionfile a filename scaps\def
save settings.actionlistfile a filename scaps\def
save settings.batchsettingsfile a filename scaps\bdf
save settings.recordersettingsfile a filename scaps\bdf
save settings.allscapssettingsfile a filename scaps\def
save results.eb a filename scaps\results
save results.genrec a filename scaps\results
save results.ac a filename scaps\results
save results.iv a filename scaps\results
save results.cv a filename scaps\results
save results.cf a filename scaps\results
save results.qe a filename scaps\results
save results.recorder a filename scaps\results
save graph.eb.wholepanel always .png ! scaps\results
save graph.eb.energybands always .png ! scaps\results
save graph.eb.carrierdensities … …
save graph.eb.currents

save graph.eb.ftraps

save graph.ac.wholepanel

save graph.ac.currents.amplitude

save graph.ac.currents.phase

save graph.ac.potentials.amplitude

save graph.ac.potentials.phase

save graph.genrec.wholepanel

save graph.genrec.genrec

save graph.genrec.ftraps

save graph.iv.wholepanel

save graph.iv.iv

save graph.iv.recombination

save graph.cv.wholepanel

save graph.cv.cv

save graph.cv.gv

 5

save graph.cv.Mott-Schottky

save graph.cv.dopingprofile

save graph.cf.wholepanel

save graph.cf.cf

save graph.cf.gf

save graph.cf.Nyquist

save graph.cf.G(f)/f-f

save graph.qe.wholepanel

save graph.qe.qe

save graph.recording.wholepanel

save graph.recording.resultsgraph

save graph.grading.wholepanel

save graph.grading.gradinggraph

action – commands
Syntax:
action argument value

Where action is the reserved command word, argument can take the values in the list
below, and value is a numerical value or a script variable or a filename, without path. The
filename can contain spaces. The files are supposed to reside in their default directories. Some
values can take two values only (0 or 1). There is a (very) limited degree of freedom in the
exact arguments. E.g. instead of iv.checkaction, you can also write iv.doiv or
iv.iv. Instead of batch.checkaction, you can also write batch.dobatch (as in the
user interface of SCAPS < 2.10); and alike with recording.dorecord. When the value of
these commands is omitted, the value 1 is assumed (giving a clear meaning to the form doiv,
docv,…, dobatch…).

command argument value remark
action workingpoint.temperature Kelvin
action workingpoint.kT Volt or eV
action workingpoint.voltage Volt
action workingpoint.frequency Hz
action workingpoint.numberofpoints ≥ 2

action dark none overrides light
action light none overrides dark
action generationfrominternalmodel none overrides

generationfromfile

 6

action spectrumfile filename scaps\spectrum
action spectrumcutoff.on none overrides

spectrumcutoff.off
action spectrumcutoff.off none overrides

spectrumcutoff.on
action spectrumcutoff.shortlambda nm
action spectrumcutoff.longlambda nm
action intensity.ND

action intensity.T %
action generationfromfile none overrides

generationfrominternalm
odel

action generationfile filename scaps\generation
action generationfromfile.attenuation %
action iv.startV V
action iv.stopV V
action iv.points ≥ 2

action iv.increment V
action iv.checkaction 0 or 1 1 is the default

action iv.doiv none equivalent to action iv.checkaction 1

action iv.stopafterVoc 0 or 1

action cv.startV

action cv.stopV V
action cv.points ≥ 2 V
action cv.increment V
action cv.checkaction 0 or 1 1 is the default

action cv.docv none equivalent to action cv.checkaction 1

action cf.startf Hz
action cf.stopf Hz
action cf.total points ≥ 2

action cf.points per decade ≥ 2

action cf.checkaction 0 or 1 1 is the default

action cf.docf none equivalent to action cf.checkaction 1

action qe.startlambda nm
action qe.stoplambda nm
action qe.points ≥ 2

action qe.increment nm

 7

action qe.checkaction 0 or 1 1 is the default

action qe.doqe none equivalent to action qe.checkaction 1

set – commands
Syntax:
set argument value

where set is the reserved command word, argument can take the reserved values from the
table below. The set command can also be used to set the script variables. The third part of
the set command line is value: this is a numerical value, a script variable or a filename,
without path. The filename can contain spaces. The files are supposed to reside in their default
directories.
Some values can take two values only (0 or 1). When the value is a numerical value, you can
specify a number, e.g. 1.25E16, or one of the internal script variables mode, loopcounter,
maxiteration, {m}index, {m}value, {m}vector and n{m}. Here {m} can be one of the letters
x, y, …, w., and n{w} is the number of elements in the corresponding {w}vector.
The values of the internal variables {m}value, {m}vector, … can be set directly with a set-
command; also, they are used and possibly changed in SCAPSUserFunction.dll (see later).
The value of n{m} can be set directly with the set command; it is also updated in some
commands: get, math and clear, see later. The allowed indices in SCAPS script vectors
are listed in the Table below.
When you set a new value of n{m}, the length of the corresponding vector is updated. If the
new value is smaller than the previous one, data gets lost, if it is larger, the vector is extended
with uninitialised (random) numbers. Before setting a script variable, you might want to re-
initialise them with one of the clear commands, see later.

These conventions for the use of scriptvectors in the set and get (see further) commands
are summarised in the Table below.
script vector format index meaning; remarks
{m}vector no index Only as an argument of set

scriptvariable… or as the value of get
characteristics… The value of n{m} is
incremented, all existing elements of {m}vector
are shifted one up, and the value of the set
scriptvariable… command, or the
parameter to get, is placed at {m}vector[0]

{m}vector[-1] -1 Only as an argument of set

scriptvariable… or as the value of get
characteristics… The value of n{m} is
incremented, and the value of the set

scriptvariable… command, or the
parameter to get, is placed as the new last

 8

element of {m}vector
{m}vector[i] a number i is an integer number and should be 0 ≤ i ≤

n{m}-1
{m}vector[last] For your comfort: internally, last is replaced with the

appropriate n{m}-1
{m}vector[loopcounter] a scriptvariable
{m}vector[mode] a scriptvariable
{m}vector[maxiteration] a scriptvariable
{m}vector[{n}index] a scriptvariable m and n can differ: you can specify e.g.

zvector[yindex]
{m}vector[{n}value] a scriptvariable m and n can differ: you can specify e.g.

uvector[wvalue]. The value of {n}value is first
rounded to the nearest integer.

{m}vector[{n}vector[…]] a scriptvariable Here the index … of the inner {m}vector takes
one of the forms allowed in this Table. You can
nest many vectors, but that should not be a
reason to exaggerate

The set commands are summarised in the Table below.

command argument value remark

set the script variables
set scriptvariable.maxiteration integer
set scriptvariable.status integer
set scriptvariable.mode integer
set scriptvariable.looperror
set scriptvariable.maxerror
set scriptvariable.xvalue
set scriptvariable.xvalue
set scriptvariable.{m}vector[i] 0 ≤ i ≤ nx - 1, or i

= -1, or no index
set scriptvariable.n{m} integer

set scriptvariable.{m}name character string length < 256
set scriptvariable.filename character string length < 256
set scriptvariable.filename.SCAPSpath character string length < 256
The filename is completed to (or changed to) the full default SCAPS path. E.g. the command
scriptvariable.filename.SCAPSpath mycell.def will set filename to (e.g.)
c:\MB\SCAPS try-outs\def\mycell.def. If no value is given, the actual filename is completed to the
SCAPS default path. This command is useful to pass a filename to another programme, that might need
to know the full path (e.g. the SCALSdll function).

 9

general set commands
set quitscript.interactiveSCAPS no value the default
set quitscript.quitSCAPS no value
set errorhandling.toscreen no value
set errorhandling.appendtofile no value the default
set errorhandling.overwritefile no value
set errorhandling.outputlist.truncate no value the default
set errorhandling.outputlist.fillzeros no value
set errorhandling.outputlist.fillwhite no value
set external.Rs Ωcm2

set external.Rsh Ωcm2
set external.Gsh Scm-2

set internal.reflection fraction, not %
set internal.transmission fraction, not %

illumination set commands
set illumination.fromleft no value
set illumination.fromright no value
set qe.photonflux #.cm-2s-1

set qe.photonpower Wcm-2

contact set commands: replace contact with either leftcontact or rightcontact
set contact.Sn cm.s-1

set contact.Sp cm.s-1
set contact.opticalfilter.on no value
set contact.opticalfilter.off no value
set contact.opticalfilter.transmission no value
set contact.opticalfilter.reflection no value
set contact.opticalfilter.value fraction, not %
set contact.opticalfilter.file a filename scaps/filter
set contact.opticalfilter 0 or 1
set contact.workfunction V or eV
set contact.flatband.off no value
set contact.flatband.once no value
set contact.flatband.always no value
layer set commands: replace layer with layer1, layer2, … layer7
set layer.thickness μm
set layer.Eg eV
set layer.chi V or eV
set layer.epsilon -

 10

set layer.NC cm-3

set layer.NV cm-3
set layer.vthn cm.s-1

set layer.vthp cm.s-1
set layer.mun cm2V-1s-1

set layer.mup cm2V-1s-1
set layer.NA cm-3
set layer.ND cm-3
set layer.radiative cm3s-1

set layer.Augern cm6s-1
set layer.Augerp cm6s-1
set layer.absorption.file a filename scaps\absorption
set layer.absorption.A eV-1/2cm-1

set layer.absorption.B eV+1/2cm-1

defect set commands: replace layer with layer1, …, and defect with defect1, defect2 or
defect3
set layer.defect.singlelevel no value
set layer.defect.uniform no value
set layer.defect.gauss no value
set layer.defect.CBtail no value
set layer.defect.VBtail no value
set layer.defect.neutral no value
set layer.defect.singledonor no value
set layer.defect.doubledonor no value
set layer.defect.singleacceptor no value
set layer.defect.doubleacceptor no value
set layer.defect.amphoteric no value
set layer.defect.aboveEV no value
set layer.defect.belowEC no value
set layer.defect.aboveEi no value
set layer.defect.Et eV
set layer.defect.Echar eV
set layer.defect.Ntotal cm-3

set layer.defect.Npeak cm-3eV-1

interface set commands: replace interface with interface1, interface2, …
interface6
set interface.IBtunneling.off no value
set interface.IBtunneling.on no value
set interface.IBtunneling.me --

 11

set interface.IBtunneling.mh --

interface defect set commands: replace interface with interface1,… and IFdefect with
IFdefect1, IFdefect2, IFdefect3
set interface.IFdefect.singlelevel no value
set interface.IFdefect.uniform no value
set interface.IFdefect.gauss no value
set interface.IFdefect.CBtail no value
set interface.IFdefect.VBtail no value
set interface.IFdefect.neutral no value
set interface.IFdefect.singledonor no value
set interface.IFdefect.singleacceptor no value
set interface.IFdefect.abovehighestEV no value
set interface.IFdefect.aboveEVleft no value
set interface.IFdefect.belowlowestEC no value
set interface.IFdefect.aboveEileft no value
set interface.IFdefect.aboveEiright no value
set interface.IFdefect.Et eV
set interface.IFdefect.Echar eV
set interface.IFdefect.Ntotal cm-2

set interface.IFdefect.Npeak cm-2eV-1

set interface.IFdefect.tunneling.on no value
set interface.IFdefect.tunneling.off no value
set interface.IFdefect.tunneling.me --
set interface.IFdefect.tunneling.mh --

calculate – command
Syntax:
calculate argument

This is equivalent with pressing one of the “Calculate”-buttons in the interactive user
interface. If no argument is present the command gets interpreted as calculate
singleshot

command argument remark
calculate singleshot this argument can be omitted
calculate batch
calculate recorder

get – commands

 12

Syntax:
get argument variable

Here, variable is one of the internal script variables.
When you ask for a scalar property, you can use {m}value or {m}vector[index]: the actual
value of the variable will then be overwritten with the result of the get action. Here index is
one of the allowed formats for indices in the SCAPS script. Other scalar script variables that
can be used are looperror and maxerror.
When you ask for a vectorial properties, like a full I-V or QE curve, these are placed in two
vectors: e.g. I in {m}vector. and V in {n}vector. If no vectors are specified, xvector and
yvector are assumed: thus get cv is identical to get cv xy. Also note that only the result
of the last simulation is acquired: the last single shot simulation, or the last simulation in a
batch run.
The get command updates {m}name as well.

The purpose of the get command is that the script file, or the program launching the script
file (e.g. from within SCAPS, from MatLab, another C-programme, Windows script or MS-
DOS command language…) would have access to variables such as Voc , Jsc, η, … or even
arrays as J(V), … in a more convenient way then having to retrieve them from a SCAPS output
file.
Also, these internal variables can be passed to and updated by the SCAPSUserFunction, that
is under the control of the SCAPS user, see later.

command argument value and remarks
get solar cell characteristics commands
get characteristics.eta
get characteristics.voc
get characteristics.jsc
get characteristics.ff
get characteristics.vmpp
get characteristics.jmpp

a scalar script value:
xvalue or yvalue or
{m}vector[i] where the index i
should be in the range 0 ≤ i ≤
{m}x-1. Using i = -1 means that
the value is appended at the end
of {m}vector, and that n{m} are
incremented with one. Using
{m}vector or (thus without
index) means that the size n{m}
is incremented with one, all
elements of the vectors are
shifted one position up, and the
value returned by
characteristics… is
placed at {m}vector[0].

get general characteristics
get iv Two letters should be passed

 13

get cv
get gv
get cf
get gf
get qe
get gx
get measurement.iv

get measurement.cv

get measurement.gv

get measurement.cf

get measurement.gf

get measurement.qe

get recombination.tot

get recombination.SRH
get recombination.rad

get recombination.aug

get recorder

for the value, corresponding
with two vectors. The abscissa
is saved in the first, the
ordinate in the second. (e.g.
get cf zw, saves the
frequency in the vector zvector
and the capacitance in the
vector wvector). If the value is
omitted, xy is assumed. The
sizes n{m} are set
automatically, and also the
names {m}name are set.

In the same way, you can now
also get a measurement.

get mesh characteristics; layer should be substituted by layer1, layer2, … or layer7
get layer.leftindex the index of the leftmost point

in the specified layer
get layer.leftx the position x (in μm) of the

leftmost point in the specified
layer

get layer.rightindex the index of the rightmost point
in the specified layer

get layer.rightx the position x (in μm) of the
rightmost point in the specified
layer

get numberoflayers the number of layers in the
actual cell definition

get celllength

cellength

the total cell length x (in μm) of
the actual cell definition; both
celllength and cellength will
work ☺

From SCAPS 3.0.02 on (may 2011), the scalar cell
parameters that are available in set are made available
in get. When your cell has graded properties, the
parameters that you can set or get relate to the

 14

‘pureA’ material (when grading is a function of
composition) or to the left side of a layer (when grading
is a function of position) (see the SCAPS2.8 add-on
manual on grading). The units and remarks are as for the
corresponding set commands
contact get commands: replace contact with either
leftcontact or rightcontact
get contact.Sn getcontact.opticalfilter.file

get contact.Sp getcontact.opticalfilter

get contact.opticalfilter.on getcontact.workfunction

get contact.opticalfilter.off getcontact.flatband.off

get contact.opticalfilter.transmission getcontact.flatband.once

get contact.opticalfilter.reflection getcontact.flatband.always

get contact.opticalfilter.value

layer get commands: replace layer with layer1,
layer2, … layer7
get layer.thickness get layer.NA

get layer.Eg get layer.ND

get layer.chi get layer.radiative

get layer.epsilon get layer.Augern

get layer.NC get layer.Augerp

get layer.NV get layer.absorption.file

get layer.vthn get layer.absorption.A

get layer.vthp get layer.absorption.B

get layer.mun

get layer.mup

defect get commands: replace layer with layer1, …, and
defect with defect1, defect2 or defect3

get layer.defect.energydistribution returns an integer that encodes
for single, uniform, Gauß, …

get layer.defect.chargetype returns an integer that encodes
for neutral, single donor, ….

get layer.defect.referencelevel returns an integer that encodes
for above EV, below EC, above
Ei

get layer.defect.Et
get layer.defect.Echar
get layer.defect.Ntotal
get layer.defect.Npeak

interface get commands: replace interface with
interface1, interface2, … interface6

 15

get interface.IBtunneling.off get interface.IBtunneling.me

get interface.IBtunneling.on get interface.IBtunneling.mh

interface defect get commands: replace interface with
interface1,… and IFdefect with IFdefect1,
IFdefect2, IFdefect3

get interface.IFdefect.energydistribution returns an integer that encodes for
single, uniform, …

get interface.IFdefect.chargetype returns an integer that encodes for
neutral, single donor, …

get interface.IFdefect.referencelevel returns an integer that encodes for
above EV left, above highest EV,
below lowest EC, …

get interface.IFdefect.Et
get interface.IFdefect.Echar
get interface.IFdefect.Ntotal
get interface.IFdefect.Npeak
get interface.IFdefect.tunneling.on
get interface.IFdefect.tunneling.off
get interface.IFdefect.tunneling.me
get interface.IFdefect.tunneling.mh

Some action commands and some other set commands now also have their corresponding get command
get action.workingpoint.temperature getaction.intensity.T

get action.workingpoint.kT getaction.generationfromfile.attenuation

get action.workingpoint.voltage getexternal.Rs

get action.workingpoint.frequency getexternal.Rsh

get action.spectrumcutoff.shortlambda getexternal.Gsh

get action.spectrumcutoff.longlambda getinternal.reflection

get action.intensity.ND getinternal.transmission

The command get recorder gets the data from the record results, and hence allows to
access almost any property in script mode.
The recorded property is selected by the value of the script variable mode (the first property
in the record setting list is accessed when mode = 0, the next when mode = 1…).
If the recorded property is a scalar value as a function of the batch calculation (e.g. the open
circuit voltage) the abscissa consists of the numbers of the batch calculations. If the recorded
property is a vector (e.g. the conduction band profile) the abscissa value is the mesh. In this
case only the recorded vector of the last batch calculation is copied to the script variable. In
this view, performing a batch with only one calculation using load singleshotbatch is
very recommended.

loop – commands

 16

Syntax:
loop argument variable

On encountering a loop start command line, the internal script variables are set to:
loopcounter = 0 and looperror = 1.0E30 (or the value of looperror that was set before).
The next script commands are executed until loop stop is met. Then, if loopcounter <
maxiteration-1 and looperror > maxerror, the internal script variable loopcounter is
incremented, and the script is retaken from the preceding loop start command. Thus,
when the error condition is never met, loopcounter will successively be set to 0 …
maxiteration-1, thus maxiteration values. The internal variables maxiteration and
maxerror can be set with set loop.maxiteration and set loop.maxerror at
any time.
There is no set command to set the internal script variable loopcounter. The variable
loopcounter is internally set to zero on starting a loop, and then incremented with one each
times the loop is run. The variable looperror can be set directly or be returned by the dll
programme SCAPSUserFunction.dll, that should be set-up by the user (one example of such
dll is distributed with the SCAPS installation). Two of the loop commands are equivalent with
a set command:
E.g. loop maxiteration 20 is equivalent to
set scriptvariable.maxiteration 20

E.g. loop maxerror 1E-6 is equivalent to
set scriptvariable.maxerror 1E-6

command argument value default-directory
loop start no value

loop stop no value

loop maxiteration min=5;
max=100;
default = 25.

loop maxerror min=1E-8;
max=1E25;
default=1E-5

math – commands
Syntax:
math argument value

The math commands allows to perform mathematical operations on the script vectors. The
argument is followed by a list of one to four letters form the set {x,y,z,u,v,w}. Uppercase or
lower case do not matter; however, for clearness in the description below, we will use upper
case letters when vectors are meant, and lower case letters otherwise.
If a variable is a vector, e.g. Y, it is interpreted as Yvector. If a variable is a scalar, e.g. z, it is
interpreted as zvalue. If a variable is an index, e.g. w, it is interpreted as windex.

 17

Some operations are on vectors. Then operations are performed element by element and can
be performed ‘in place’ (e.g. A ← A+B) where the original content of A is lost.

command argument value remark
A,B and C represent a vector variable
a, b, c represent a scalar variable
i represents an index variable
math add ABC A = B + C . Vector operation
math multiply ABC A = B * C . Vector operation
math subtract ABC A = B - C . Vector operation
math divide ABC A = B / C . Vector operation
math exp AB A = exp(B) . Vector operation
math log AB A = ln(B) . Vector operation
math power ABc A = B ^ c . Vector operation, A and B are

vectors, but c is a scalar
math vectoradd ABC A = B + C . Vector operation. Identical to add
math vectormultiply ABC A = B * C . Vector operation Identical to

multiply
math vectorsubtract ABC A = B - C . Vector operation Identical to

subtract
math vectordivide ABC A = B / C . Vector operation Identical to

divide
math vectorexp AB A = exp(B) . Vector operation Identical to exp
math vectorlog AB A = ln(B) . Vector operation Identical to exp
math vectorpower ABc A = B ^ c . Vector operation, A and B are

vectors, but c is a scalar Identical to power
math scalaradd abc a = b + c . Scalar operation
math scalarmultiply abc a = b * c . Scalar operation
math scalarsubtract abc a = b - c . Scalar operation
math scalardivide abc a = b / c . Scalar operation
math scalarexp ab a = exp(b) . Scalar operation
math scalarlog ab a = ln(b) . Scalar operation
math scalarpower abc a = b ^ c . Scalar operation.

math integrate ABC () ()
0
B

A B c B dB′ ′= ∫ . Vector operation

math differentiate ABC () ()dC B
A B

dB
= . Vector operation

math interpolate aAbB When A is considered as a function of B, thus Ai =
A(Bi), it returns by interpolation a = A(b)

 18

math closestindex iaA Returns the index i for which the element Ai is
closest to a

math extract ABcd c and d are indices. The elements c up to and
including d of vector B are copied into vector A,
that now gets dimension d-c+1; the previous
contents and dimension of A is lost. The operation
can be ‘in place’: A=B is allowed. This function is
useful to pick out the information of one layer
from the full x-dependence, when the indices c
and d are obtained with get
layer.leftindex and get
layer.rightindex .

math increment i The index i is incremented with one. When i is
one letter from {x, y, …, w}, the index is
interpreted as xindex, yindex,…, or windex. But
you can also use loopcounter, maxiteration,
status, mode, or one of the words xindex…
written in full.

math decrement i The index i is incremented with one. i is a SCAPS
script index, see the above statement for the valid
format.

math abs AB Ai = |Bi| . Vector operation
math vectorabs AB Ai = |Bi| . Vector operation. Identical to abs
math scalarabs ab a = |b|. Scalar operation

math min aA a = min(Ai)
math max aA a = max(Ai)

math sum aA i
i

a A=∑

math average aA
1

0

1 An

i
A i

a A
n

−

=
= ∑

math sumofsquares aA
2
i

i
a A=∑

math averageofsquares aA
1

2

0

1 An

i
A i

a A
n

−

=
= ∑

math product aA i
i

a A= Π

math geometricaverage aA
1

An
i

i
a A⎛ ⎞= ⎜ ⎟

⎝ ⎠
Π

math chi_square aBCDEwhere B contains Xmeasured and C contains Ymeasured;
and D contains Xcalculated and D contains Ycalculated.
Then chi_square is calculated as:

 19

()

()

2
meas calc

2
2

meas

i

i

y y

y

−
χ =

∑

∑
The sum is taken at

the measurement points xmeas,i that fall within the
range of the calculated xcalc points. ycalc is linearly
interpolated between two calculated points xcalc,j

and xcalc,j+1 at the measured point xmaes,i. Yhe χ2

sum is normalised: dimensionless, and should
ever become small compared to 1.

math chi_square_log The same as chi_square but first the logarithm of
(the absolute value of) all ymaes and ycalc is taken.

math push ABC A = [B , C] A is a concatenation of B and C. B is
placed on top of C

math constant ABc A = c; Watch out: c is a scalar, A gets the same
length as B. B is only used to set the length of A.
AAc is allowed as well.

math linear AB A = [1, 2 ,3…]; A gets the same length as B. B is
only used to set the length of A. AA is allowed as
well.

math rangeLin A The first point A[0] and the last point A[nA-1] of
the vector A are conserved. The points in between
are scaled in a linear way between those end
points.

math rangeLog A The first point A[0] and the last point A[nA-1] of
the vector A are conserved. The points in between
are scaled in a logarithmic way between those end
points.

The five math commands below are special: they require a composed value. The first part is a vector a letter
from {x, y, z, u, v, w} (noted here as A), that stands for the corresponding vector. The next parts of the
value must be separated by whitespace (space of tab) from the first part and from each other. They can be a
number, or a SCAPS script variable.

math fillConstant A constant n n is the number of points

math fillLinear A startvalue stopvalue n n is the number of points

math fillLogarithmic A startvalue stopvalue n n is the number of points

math fillLogarithmicPerDecadeA startvalue stopvalue n n is the number of points per
decade

math force_in_range a minvalue maxvalue the value of the scalar a is
forced in the range
[minvalue, maxvalue]

The last for math commands (the fill-commands) provide a more comfortable way to define a
vector size, and fill it.
E.g. the commands below
set scriptvariable.maxiteration 11

 20

set scriptvariable.nx maxiteration

set scriptvariable.xvector[0] 0

set scriptvariable.xvector[last] 5.0

math RangeLin X

now can be replaced with e.g.
set scriptvariable.maxiteration 11

math FillLinear X 0.0 5.0 maxiteration

or directly with
math FillLinear X 0.0 5.0 11

plot – commands
Syntax:
plot argument value

The plot command works in a similar way as the math command. Graphs which are plotted
using this command are drawn on the Script results panel.

command argument value remark
A,B and C represent a vector and should be chosen out of the set {x,y,z,u,v,w}

plot draw AB Plot A on the abscissa and B on the ordinate

plot AB Identical to plot draw

plot drawversusindex A Plot the index i on the abscissa and Ai on the ordinate

plot clear Clear the plots drawn by the script. Identical to
clear plot

clear – commands
Syntax:
clear argument

With clear scriptvariables, all script variables (or all but 2 or 3 elements) are set to
their defaults. clear simulations is equivalent to pressing the ‘clear all simulations’
button in the SCAPS action panel.
command argument value remarks
clear scriptvariables.all no value see text above
clear scriptvariables.allbutfirst3 no value leaves xvector[i] and

yvector[i] with i = 0, 1,

 21

2. nx and ny are set to 3.
The other script variables
are not affected.

clear scriptvariables.allbutfirst2 no value idem, but with i = 0, 1
clear scriptvariables.allbutlast3 no value idem, but shifts elements

i = nx-1, nx-2, nx-3 (or
with ny) to i = 0, 1, 2
and leaves them

clear scriptvariables.allbutlast2 no value idem, but shifts elements
i = nx-1, nx-2 (or with
ny) to i = 0, 1 and leaves
them

clear simulations no value see text above
clear plot no value clears all script graphs;

identical with plot
clear

clear scriptgraphs no value identical with plot
clear or clear plot

clear actions no value unchecks all 4 actions
(IV, CV, Cf and QE) and
restores the workpoint
settings to a default (300
K, 0 V, 1 MHz, 5 pts)

clear all no value clears all simulations, all
scriptvariables and all
plots: equivalent to
clear simulations
plus clear
scriptvariables.a
ll

but not clear
actions

The application SCAPSUserFunction.dll
This function is run by
rundll scapsuserfunction or

run dll scapsuserfunction or
run dll

(As of now, only one user dll is recognized is SCAPS, named SCAPSUserFunction.dll. The
format of this command allows possible later addition of more dll’s).

 22

This dll is the method that SCAPS is using to implement two-way communication with the
user. When you do not (want to) know how to write an own program and make a dll (dynamic
link library) of it, you are restricted to use only the SCAPSUserFunction.dll as delivered with
SCAPS, or not to use loops in a SCAPS script. The following information is for SCAPS users with
programming skills. By writing their own SCAPSUserFunction.dll, they now can realize the
following (in the formulation of an external SCAPS user):

“I would need the possibility to do a simulation, evaluate the result with an
external program and let it adjust the problem definition for the next simulation,
do a simulation, and so on...”
… well, this external program should be named SCAPSUserFunction, and be present as a dll
file in the scaps/lib directory. When implemented in C or C++, this function must comply with
the function definition:
int DLLIMPORT SCAPSUserFunction (int mode, double *xvalue, double *yvalue, double
*svector[6], int sn[6], double *looperror, char *filename);
The keyword DLLIMPORT might be dependent on the development environment; here it is
for LW/CVI of National Instruments.
The meaning of the other items is:
SCAPSUserFunction: the name of the dll. The use must provide a SCAPSUserFunction.dll
and SCAPSUserFunction.lib with this name, in the scaps/lib directory.
int SCAPSUserFunction: the function should return an integer value, indicating the success of
the function evaluation. SCAPS interprets 0 as ‘success’ and a negative value as a failure.
This value is stored in the script-variable status, and shown in the error output (to screen or
in the SCAPS error logfile.
int mode: an integer that can be used to implement several strategies in one dll function. In the
example delivered with SCAPS, mode = 1 or 2 means ‘find a root’ (e.g. find some NA such that
Voc = 0.50 V), and mode 3 or 4 means ‘find an extremum’ (e.g. find some Nt such that η is
maximal).
double *xvalue, double *yvalue: (pointers to) two scalar values, passed to the function by
reference, such that a new value of them can be returned by the function. Note with SCAPS
3.0.02: though there are now 6 scalar values xvalue, …, wvalue, only xvalue and yvalue are
passed to the SCAPS dll. Also, the new integer variables xindex, …, windex, are not passed to
the dll: thus, this dll remains compatible with earlier SCAPS versions.
double *svector[6]: array of (pointers to) one dimensional arrays, with dimensions specified
in sn[]. These vectors correspond to the vectors xvector (=0), yvector (=1), zvector
(=2), uvector (=3), vvector (=4), wvector (=5). These arrays can get new values in the
function that is returned to SCAPS.
int sn[6]: the dimension of the above vectors. These are passed by value, not by reference:
their value cannot be updated and returned by the function.

 23

double *looperror: a pointer to a scalar variable, that can be updated and returned by the
function. In the SCAPS script processor, ot is treated as the internal looperror variable.
Returning its value by SCAPSUserFunction.dll is the only way to change looperror in a loop.
Since the script processor only checks if |looperror| < maxerror, so you can also return a
negative value here.
char *filename: a pointer to a string variable of max. 256 characters. The SCAPS script
processor will treat it as a filename, that can be used to set e.g. a spectrum file, a generation
file, a filter file,… with the set command.
To set up your own dll, you can use other variable names; however, the type, size and order of
the variables must be exactly as specified here. Those not using C or C++ should use variable
types of the same size (in bits) than the C types int, double, char, pointer.
The users who want to develop their own dll, or to modify the existing dll (that is easier
to start with ☺), should ask us for the source code: SCAPSdll.c and SCAPSdll.h.

Executing system commands in a script
The command line to do this is:
runsystem systemcommand or
run system sytemcommand

where systemcommand is something that is recognized by MS-Windows as a valid
command. These can be .exe files, .bat files or WINDOWS commands. Here you can any of
your own programmes (extension .exe; the arguments on the command line can be included),
or any of your batch files (extension .bat).
Examples are:
runsystem myownopticalprogramme.exe inputfile1 inputfile2
outputfile

runsystem myownwindowsbatchprogramme.bat

runsystem print ivresults.iv

(in the last command, it is likely that Windows will need to know the full path and not only
the filename…).

Executing a script from within a script
The command line to do this is:
run script scriptfile

where scriptfile is a file containing a script. You can nest script files (that is, run a
script file from within another script file) as you like, but that should not be a reason for
exaggeration. All the script variables are transferred from one script to the other, with the
exception of some loop-variables loopcounter, looperror, maxerror, maxiterations, which
are local to each script file.

Show scriptvariables

 24

The command line to do this is:
show scriptvariables

These are shown on the screen, if errorhandling.toscreen is set, or to the standard
error file, if errorhandling.appendtofile or
errorhandling.overwritefile are set. This command is very useful in debugging
your script files. Also, you can stop the execution of a script when the script variables are
shown on the screen. When scripts are nested, you exit all scripts upon clicking ‘stop script
execution’. You can comment out the show commands once the script is OK. The show
scriptvariables panel is also available from the action panel (the SCAPS main panel)
after execution of a script.
The show command does not show all values of (very) long vectors, if the output is directed
to the standard error file. In order to access these, you should use save

scriptvariables.

actual implementation of SCAPSUserFunction
The actual implementation of SCAPSUserFunction implements various actions depending of
the value of the scriptvariable mode.

mode = 0. Nothing meaningful is done for now: only a file is returned as filename. (at this
moment we are using the mode = 0 part of the dll for try-outs). A programmer could
replace this part with whatever calculations or manipulations that result in a file to pass
back to SCAPS.

mode = 1 or mode = 2. Helps to search the root of a function y(x). During the preceding
script commands, the successive evaluations of y(x) are stored in xvector and
yvector, the most recent at xvector[0] and yvector[0]. SCAPSUserFunction finds
a better approximation xvalue that would make yvalue = y(xvalue). During the
subsequent sript commands, xvalue should be stored in xvector[0] (and all existing
elements of xvector should be pushed one index up). Then a new calculation should be
done, and the result should be stored in yvector[0] (pushing the existing elements one
place up). Then another call to SCAPSUserFunction can be made to obtain a next, better
estimate. Use mode = 1 for a property of ‘linear character’ (e.g. thickness, bandgap,…)
and mode = 2 for a property of ‘logarithmic nature’ (e.g. a doping density, a trap density).
The difference is: a variable of linear nature is incremented by adding or subtracting
something; a variable of logarithmic nature is incremented by multiplying with something.
You must provide at least two y(x) points (as elements [0] and [1] of xvector and
yvector) to start with. Of course there is no guarantee at all that such root can be found
in your problem! Here is an example:
 // find a value of Nt (of the first defect in the first layer) that results in Voc = 0.5 V.
// for some problem and some ill;umination condition to be set first
// the variable Nt is of ‘logarithmic nature’, thus use mode = 2
set scriptvariable.mode 2

 25

set scriptvariable.yvalue 0.5000 // the desired value
// first initial guess
set scriptvariable.xvector[0] 1e14

set layer1.defect1.ntotal xvector[0]

calculate
get characteristics.voc yvector[0]

// second initial guess
set scriptvariable.xvector[1] 1e13

set layer1.defect1.ntotal xvector[1]

calculate

get characteristics.voc yvector[1]
// start a loop, do not exagerate with the precision or the number of iterations
loop maxiteration 30

loop maxerror 1e-4

loop start
// Run the dll that is delivered with SCAPS
rundll scapsuserfunction

// it returns xvalue as a better guess for the variable Nt, set it to Nt,
set layer1.defect1.ntotal xvalue

// place this better guess on xvector[0] (and push the rest upward)
set scriptvariable.xvector xvalue

calculate
// places the new Voc in yvector[0] and pushes the rest up
get characteristics.voc yvector

loop stop
// possible output afterwards
show scriptvariables

save results.iv findVoc=0.5V.iv

save graphs.iv.iv findVoc=0.5V.png

mode = 3 or mode = 4. Helps to search the maximum of a function y(x). To start with, at least
three values (the elements [0], [1] and [2]) of xvector and yvector should have been set.
The function proposes a new value for the maximum in xvalue, and rearranges the
elements [0], [1] and [2] so that [0] and [1] are closest to the maximum (as it thinks). The
next script commands should place this xvalue on top of xvector, evaluate y(x) for this
new xvalue and place the result on top of the yvector, and then call SCAPSUserFunction
again. Again, there is no guarantee that a maximum will be found in your problem! Here
is an example:
// find a value of the thickness in layer1 of some problem that gives maximum Jsc.

 26

// a thickness d is ‘linear nature’, and we are looking for a maximum
// thus we set mode = 3.
set scriptvariable.mode 3

// three initial guesses of the parameter d (in SCAPS, it is in µm)
set scriptvariable.xvector[0] 0.5

set scriptvariable.xvector[1] 1

set scriptvariable.xvector[2] 1.5
// assign the parameter to d and calculate the function Jsc; do so for the 3 guesses
set layer1.thickness xvector[0]

calculate
get characteristics.jsc yvector[0]

set layer1.thickness xvector[1]

calculate

get characteristics.jsc yvector[1]

set layer1.thickness xvector[2]

calculate

get characteristics.jsc yvector[2]
// start the iteration loop; do not exaggerate with the settings!
loop maxiteration 15

loop maxerror 1e-2 // It should be compared to a Jsc of about 30 mA/cm2

loop start

rundll scapsuserfunction
// the function returns xvalue as a better guess for the variable
// set this to d, place it on xvector[0] (and push the rest upward)
set layer1.thickness xvalue

set scriptvariable.xvector xvalue
// calculate and place Jsc on top of yvector
calculate

get characteristics.Jsc yvector

loop stop
// possible output after the end of the iteration loop
show scriptvariables

save results.iv findmaximumJsc.iv

save graphs.iv.iv findfindmaximumJsc.png

mode = 5 or mode = 6. Helps to search the minimum of a function y(x). It works exactly as
the maximum finding algorithm. mode = 5 is for a variable of linear nature, and mode = 6
for a variable of logarithmic nature.

 27

mode > 6. Nothing is done, but the SCAPSUserFunction() waits for you to input your ideas
of a meaningful user program.

