SCAPS Version 2.9.03, August 2010

This is not a stand-alone manual of scAps. It only describes the novelties in scaps 2.9.03
compared to scaps 2.9.02 and earlier. A (kind of) manual of the sCAPS programme is
contained in another document. This is complemented with (so far) two add-on manuals, for
scAaps 2.8 (‘grading’) and for scaps 2.9 (‘multilevel defects'). Also, there is a short and
recommendable document Getting Started.pdf, which does exactly what it promises.

1 Enhancementsof version 2.9.03, compared to version 2.9.02

The most important new features in 2010 are in the user interface: more information can now
be saved and loaded, and a script language is implemented.

1.1 Savingand loading

Until now, you could save and load the problem definition file. Now, you can also save and
load the action list (all settings on the action panel), the batch description (all settings on the
batch panel) and the recorder settings (all settings in the recorder panel). Also, you can save
and load all settings together in one file. Doing so, you can reproduce a former simulation by
just clicking calculate: al other settings will be as they were. In the table below the
default file extensions and directories are given (the SCAPS mother directory, this is where the
scaps.exe file resides, is noted as scaps\). All these files are normal text files that can be read
and edited with e.g. notepad. However, editing is at own risk, it is advised to change these
files from within scaps.

scaps filetypes default extension default directory
problem definition .def scaps\def

action list .act scaps\def

batch settings .sbf scaps\bdf
recorder settings Sif scaps\bdf

all scAPs settingsin one .scaps scaps\def

a SCAPS script .script scaps\script

1.2 Argumentson the scaAps command line

Normally scaps is started by clicking an icon on the desktop. Internaly in Windows, a
command line attached to thisicon is executed. This command line just contains the full path
of the scaps .exe file (thus scaps2902.exe or scaps2903.exe or s0). Now you can add extra
arguments to this command line: alist of filenames to be |oaded/executed before scAPS starts:
these can be one or more of the definition, action, ..., script files listed above; also a spectrum
file and a generation file can be given. The order of execution is: first .def, then .act, .scaps,
.Spe, .gen, .sbf, .srf, and finally .script. By doing so, you can ensure that SCAPS starts in the
condition that you prefer, not in the condition fixed by the scaps developers. good news for

those who had to set e.g. the wavelength range appropriate for CIGS each time again and

again.
Here are two ways to start SCAPs from a command line, and to edit thisline:

1. Make, e.g. with Notepad, a batch file with extension .bat (this stems from the very old MS-DOS
times, but is still supported in Windows). Write the command linein oneline, e.g.

scaps2903.exe all CIGS.scaps AMO.spe

A .bat fileis run by double clicking it; you can also make a shortcut to it on the desktop. To edit
the .bat file, right-click the name and select ‘edit’, or directly open from Notepad.

2. Right-click the normal scAPs-icon on your desktop, select ‘properties’, and edit the third line
(‘target’). This is well suited when you do this once and for al. When you would alter the
command line more frequently, the previous method might feel more comfortable.

1.3 Alist of parametersor filenames as a batch-parameter

In scAPs2.9.02, file names could be passed as batch parameters: definition files (always the
first batch parameter), spectrum files and generation files. These filenames could be selected
in a list, but not saved and loaded. Also, an arbitrary parameter list could be used for all
numerical parameters. These were read from a file with extension bdf (batch definition file).
Now, in scAps2.9.03, all file parameters are available as batch parameters. thus also
absorption files, filter files, and optical capture files. These lists of filenames can be edited in
a window, and aso saved and loaded. In output files, the filenames appear, not just the
number of the file name, asit was before. An arbitrary list of parameters does now not need to
be read from a file, it can be directly edited in a window (where you can paste e.g. from
Excel); thelist can be saved and loaded to afile as before.

1.4 A script language for scAps

There is now (on urgent users demand) afacility to write ascript and let it run in sCAPs. This
script is a normal text file, that contains commands that are equivalent to a mouse-click.
During execution of the script, sCAPs will not respond to user interventions (mouse or
keyboard). After execution of the script, SCAPS returns to it's normal interactive mode, or is
switched off (to be set with a script command). When no script file was found in the
command line, SCAPS remains the same interactive program as it has always been. A few
SCAPS script are distributed with scAPs2.9.03 to serve as an example.

There are several levels of sophistication to use scripts.

The basic use is that you write down all actions you would do in the interactive mode, and
then can leave the lab. One advantage of doing so would be that you could split up your to-do
list in several smaller batch jobs instead of one gigantic batch job (by giving several 1oad
batchsettings commands), and that you save the results in between (by giving save
results oOr save graphs commands). This is safer when there is a risk that your
computer (or scAps ®) would hang up underway; also, al results are waiting for you when
you come back to the lab.

A more sophisticated use is that you start and run an own (or another) program somewhere
during the execution of the script, by giving a runsystem command. For example, you

could load a problem, do just the equilibrium calculation, and save the results of the
generation panel to afile; this aso contains the mesh. Y ou could then open an own program,
read this mesh-file and use it to do an own calculation of the optical generation, and save this
in afile with the format of a scaps generation file. When your function returns, and the script
Is continued. Y ou could then load this generation file, and do all calculations you want. This
procedure is more convenient then the full-manual method that several scAPs users have
intensely used.

In this way, the communication between scaps and your own program is only via the file
system: both scaps and your program read and write files, but do not communicate directly
with each other. Also, reading and especially writing files in a scaps format might be
cumbersome for a programmer. For advanced users, a more direct communication method
between scaps and an own program has been implemented. The user program should have
been compiled as a dynamically linked library, and should be placed in the scaps mother
directory asa.dll and a.lib file. Also, these filenames, the name of the dll-program(up to now
there is only one), and the definition (the argument list) of this function is fixed. This
functionality seems to address well skilled programmers only. However, one such dil, with a
flexible functionality, is distributed with scaps, and using it does not require high level
programmer skills: see the description of the rund11 command below, and the examples
distributed with scaps. In contrast, we are confident that the basic use of SCAPS scripts can
facilitate the simulation work of abroad class of scCAPS users.

A detailed description of the scaps script language is given below.

Marc Burgelman 27-8-2010

SCAPS sCript commands

general

The scaps-directory, this is where the scaps.exe file resides, is noted as scaps\. All
command lines consist of up to three parts:

command argument value

where command and argument are reserved words, and value is free with some
restrictions, depending on the command line. The three components of the command line are
separated by whitespace (spaces, tabs,..), but should be on one line. They are not case-
sensitive (upper case or lower case letters do not matter).

At this moment, the possible commands are:

SCAPS script comands

load set calculate rundll
save get loop runsystem
action clear show

Whilst processing a script, SCAPS internally maintains a few variables, as specified in the table
below. The user can use these variables in set and get commands, and some are used
internally in a 1oop. Also, these variables are passed to an external dil function, that can be

made by the user.

name C-type default max value
value

xvalue double 0

yvalue double 0

xvector array of double 0

yvector array of double 0

nx int 0

ny int 0

loopcounter int 0

maxiteration int 25

looperror double 1E30

maxerror double 1E-3

status int 0

mode int 0

filename character string empty max size 256

bytes

load — commands

Syntax:

load argument wvalue

Where 1oad is the reserved command word, argument can take 7 reserved values, and
value is afilename, without path. The filename can contain spaces. The files are supposed
to reside in their default directories. There is (exceptionally) some freedom alowed in the
name of the argument: just writing definition, action, batch, record, allscaps,
spectrum Or generation will also do.

command argument value default-
directory

load definitionfile a filename scaps\def

load actionlistfile a filename scaps\def

load batchsettingsfile a filename scaps\bdf

load recordersettingsfile a filename scaps\bdf

load allscapssettingsfile a filename scaps\def

load spectrumfile a filename scaps\spectrum

load generationfile a filename scaps\generation

save —commands

Syntax:

save argument value

Where save is the reserved command word, argument has a compound syntax; the first
part can take 3 reserved vaues (settings, results Or graphs). The value is a
filename, without path. The filename can contain spaces. The files are supposed to reside in
their default directories.

command argument value default-directory
save settings.definitionfile afilename scaps\def
save settings.actionlistfile afilename scaps\def
save settings.batchsettingsfile afilename scaps\bdf
save settings.recordersettingsfile afilename scaps\bdf
save settings.allscapssettingsfile afilename scaps\def
save results.eb afilename scaps\results
save results.genrec afilename scaps\results
save results.ac afilename scaps\results
save results.iv afilename scaps\results
save results.cv afilename scaps\results
save results.cf afilename scaps\results
save results.ge afilename scaps\results
save results.recorder afilename scaps\results
save graph.eb.wholepanel aways.png! scaps\results
save graph.eb.energybands adways.png! scaps\results
save graph.eb.carrierdensities

save graph.eb.currents

save graph.eb.ftraps

save graph.ac.wholepanel

save graph.ac.currents.amplitude

save graph.ac.currents.phase

save graph.ac.potentials.amplitude

save graph.ac.potentials.phase

save graph.genrec.wholepanel

save graph.genrec.genrec

save graph.genrec. ftraps

save graph.iv.wholepanel

save graph.iv.iv

save graph.iv.recombination

save graph.cv.wholepanel

save graph.cv.cv

save graph.cv.gv

save graph.cv.Mott-Schottky
save graph.cv.dopingprofile
save graph.cf.wholepanel

save graph.cf.cf

save graph.cf.gf

save graph.cf.Nyquist

save graph.cf.G(f) /f-£

save graph.ge.wholepanel

save graph.ge.qge

save graph.recording.wholepanel
save graph.recording.resultsgraph
save graph.grading.wholepanel
save graph.grading.gradinggraph

action — commands
Syntax:

action argument value

Where action isthe reserved command word, argument can take 39 reserved values, and
value is a numerical value or a filename, without path. The filename can contain spaces.
The files are supposed to reside in their default directories. Some values can take two values
only (O or 1). Thereis a(very) limited degree of freedom in the exact arguments. E.g. instead
of iv.checkaction, you can aso write iv.doiv or iv.iv. Instead of
batch.checkaction, you can also write batch.dobatch (as in the user interface);
and alike with recording . dorecord. When the value of these commands is omitted, the
value 1 isassumed (giving a clear meaning to theform doiv, docv,..., dobatch...).

command argument value remark

action workingpoint.temperature Kelvin

action workingpoint.voltage Volt

action workingpoint.frequency Hz

action workingpoint.numberofpoints > 2

action dark none overrides light
action 1light none overrides dark

action

action

action

action
action
action
action
action

action

action
action
action
action
action
action
action
action
action
action
action
action
action
action
action

action
action

action
action
action
action
action
action
action

action

generationfrominternalmodel

spectrumfile

spectrumcutoff.on

spectrumcutoff.off
spectrumcutoff.shortlambda
spectrumcutoff.longlambda
intensity.ND

intensity.T

generationfromfile

generationfile
generationfromfile.attenuation
iv.startv

iv.stopV

iv.points

iv.increment

iv.checkaction

iv.stopaftervVoc

cv.startV

cv.stopV

cv.points

cv.increment
cv.checkaction
cf.startf
cf.stopt
cf.total points

cf.points per decade

cf.checkaction
ge.startlambda
ge.stoplambda
ge.points
ge.increment
ge.checkaction
batch.checkaction

recording.checkaction

none

filename

none

none

filename

none

filename

\
N

\
N

\Y
N

o Vv
N

or 1

v
N

overrides
generationfromfile

scaps\spectrum

overrides
spectrumcutoff.off

overrides spectrumcutof
nm

nm

o
5

overrides
generationfrominternalm

scaps\generation

o
5

v
v

Hz
Hz

nm

nm

nm

set —commands

Syntax:

set argument value

where set isthe reserved command word, argument can take the reserved values from the
table below. The set command can also be used to set the script variables. The third part of
the set command lineisvalue: thisisanumerica value or afilename, without path. The
filename can contain spaces. The files are supposed to reside in their default directories. Some
values can take two values only (0 or 1). When the value is a numerical value, you can specify
a number, e.g. 1.25E16, or one of the internal script variables xvalue, yvalue, xvector[ix],
yvector[ix] (take care that ix < nx and iy < ny). How the values of the internal variables
xvalue, yvalue, xvector, yvector can be set directly with a set-command; also, they are
used and possibly changed in SCAPSUserFunction.dll (see later). The value of nx, ny is
updated in a get command, see later. You can also use xvector[-1] or yvector[-1]: then nx
or ny are incremented with one, and the value is placed as the new last element. Y ou can also
use xvector or yvector (thus without index), then nx or ny are incremented, all existing
elements are shifted one up, and the value is placed at xvector[O] or yvector[O]. Before
setting a script variable, you might want to re-initialise them with one of the clear
commands, see later.

commandargument value remark

set the script wvariables

set scriptvariable.maxiteration integer

set scriptvariable.status integer

set scriptvariable.mode integer

set scriptvariable.looperror

set scriptvariable.maxerror

set scriptvariable.xvalue

set scriptvariable.yvalue

set scriptvariable.xvector [1] 0 < i< nx - 1,
or 1 = -1, or no
index

set scriptvariable.nx integer

set scriptvariable.yvector[i] 0 <i<ny - 1,
or 1 = -1, or no
index

set scriptvariable.ny integer

set scriptvariable.filename characterlength < 256

string
general set commands
set quitscript.interactiveSCAPS no value the default

set quitscript.quitSCAPS no value

set errorhandling.toscreen no value

set errorhandling.appendtofile no value the default

set errorhandling.overwritefile no value

set errorhandling.outputlist.truncate no value the default

set errorhandling.outputlist.fillzerosno value

set errorhandling.outputlist.fillwhiteno value

set external .Rs Qcm?

set external .Rsh Qcm?

set external .Gsh Scm 2

set internal.reflection fraction, not %
set internal.transmission fraction, not %
illumination set commands

set illumination.fromleft no value

set illumination.fromright no value

set ge .photonflux #.cm st

set ge.photonpower Wem ™2

contact set commands: replace contact with either leftcontact or

rightcontact

set contact.Sn cm.s’

set contact.Sp cm.s™t

set contact.opticalfilter.on no value

set contact.opticalfilter.off no value

set contact.opticalfilter.transmission no value

set contact.opticalfilter.reflection no value

set contact.opticalfilter.value fraction, not %

set contact.opticalfilter.file a scaps/filter
filename

set contact .workfunction V or eV

set contact.flatband.off no value

set contact.flatband.once no value

set contact.flatband.always no value

layer set commands: replace layer with layerl, layer2, .. layer7

set layer.thickness um

set layer.Eg ev

set layer.chi V or eV

set layer.epsilon -

set
set
set
set
set
set
set
set
set
set
set

set

set

set

layer
layer
layer
layer
layer
layer
layer

layer

layer.

layer

layer

layer.

layer.

layer

.NC
NV
.vthn
.vthp
.mun
.mup
.NA
.ND

.Augern

.Augerp

radiative

absorption.file

absorption.A

.absorption.B

a

filename

cm. s’

cm.s ™t

cm?vigt
cm?vig?t
cm™?

cm3

cm’s™t
cmfst
cmbs?t

scaps\absorption

ev?cm?t

e‘]+l/2c.m—l

defect set commands:

replace layer with layerl,

ooy

and defect with

defectl, defect2 or defect3

set layer.defect.singlelevel no value

set layer.defect.uniform no value

set layer.defect.gauss no value

set layer.defect.CBtail no value

set layer.defect.VBtail no value

set layer.defect.neutral no value

set layer.defect.singledonor no value

set layer.defect.singleacceptor no value

set layer.defect.aboveEV no value

set layer.defect.belowEC no value

set layer.defect.aboveEil no value

set layer.defect.Et ev
set layer.defect.Echar eV
set layer.defect.Ntotal cm™?
set layer.defect .Npeak cm eVt
interface set commands: replace interface with interfacel,
interface2, .. interfaceé

set interface.IBtunneling.off no value

set interface.IBtunneling.on no value

set interface.IBtunneling.me --

10

set interface.IBtunneling.mh --

interface defect set commands: replace interface with interfacel,..

and IFdefect with IFdefectl, IFdefect2, IFdefect3
set interface.IFdefect.singlelevel no value
set interface.IFdefect.uniform no value
set interface.IFdefect.gauss no value
set interface.IFdefect.CBtail no value
set interface.IFdefect.VBtail no value
set interface.IFdefect.neutral no value
set interface.IFdefect.singledonor no value
set interface.IFdefect.singleacceptor no value
set interface.IFdefect.abovehighestEV no value
set interface.IFdefect.aboveEVleft no value
set interface.IFdefect.belowlowestEC no value
set interface.IFdefect.aboveEileft no value
set interface.IFdefect.aboveEiright no value
set interface.IFdefect.Et ev
set interface.IFdefect.Echar ev
set interface.IFdefect.Ntotal cm 3
set interface.IFdefect.Npeak cm lev?
set interface.IFdefect.tunneling.on no value
set interface.IFdefect.tunneling.off no value
set interface.IFdefect.tunneling.me --
set interface.IFdefect.tunneling.mh --

calculate — command

Syntax:

calculate

No argument or value is required. in the

interactive user interface.

This is equivaent with pressing “Calculate”

get —commands

Syntax:
get argument variable

Here, variable is one of the internal script variables. When you ask for a scalar property, you
can use xvalue, yvalue, xvector[ix] or yvector[iy]: the actual value of the variable will then

11

be overwritten with the result of the get action. When you use xvector[-1] or yvector[-1], the
size of these vectors is incremented by one (thus nx—nx+1 or ny—ny+1), and the actual
argument is in the last element of the vector. when you ask for a vectorial properties, like a
full 1-V or QE curve, these are placed in xvector and yvector.

The purpose is that the script file, or the program launching the script file (e.g. MatLab,
another C-programme, Windows script or MS-DOS command language...) would have
access to variables such as V¢ , J, 1, ... Or even arrays as J(V), ... in amore convenient way
then having to retrieve them from a scaps output file.

Also, these internal variables can be passed to and updated by the SCAPSUserFunction, that
is under the control of the SCAPS user, seelater.

command argument value and remarks

get solar cell characteristics commands

get characteristics.eta a scalar script value:

get characteristics.voc xvalue or yvalue or

get characteristics.jsc xvector[i] or yvector[i] where
get characteristics.ff the index i should be in the
get characteristics.vmpp range 0 < i < nX-1 or 0 < i <
get characteristics.jmpp ny-1. Using i = -1 means that

the wvalue 1is appended at the
end of xvector or yvector, and
that nNX or ny are incremented
with one. Using xvector or
yvector (thus whithout index)
means that the size nx or ny is
incremented with one, all
elements of the wvectors are
shifted one position up, and
the value returned by
characteristics.. is placed at
xvector [0] or yvector[0]

get solar cell characteristics commands

get iv no variables should be passed:
get ov the two vectorial script
get gv vectors Xvector and Yyvector are
get of always wused: Xvector contains
get - the abscissa (thus V or f or A

or x), and yvector contains the
get ae ordinate (this I, C, G or OQE
get gx or Generation). The sizes nX =

ny are set automatically.

12

loop — commands

Syntax:

loop argument variable

On encounteringaloop start command line, the internal script variables are set to:
loopcounter = 0 and looperror = 1.0E30 (or the value of looperror that was set before).

The next script commands are executed until 1oop stop is met. Then, if loopcounter <
maxiteration and looperror > maxerror, the internal script variable loopcounter is
incremented, and the script is retaken from the preceding loop start command. The
internal variables maxiteration and maxerror can be set with set loop.maxiteration
and set loop.maxerror a any time.

There is no set command to set the internal script variable loopcounter. The variable
loopcounter is internally set to zero on starting a loop, and then incremented with one each
times the loop is run. The variable looperror can be set directly or be returned by the dlil
programme SCAPSUserFunction.dll, that should be set-up by the user (one example of such
dll is distributed with the scaps installation). Two of the 1oop commands are equivalent with
a set command:

E.Q. loop maxiteration 20 IS equivalent to set
scriptvariable.maxiteration 20

E.g. loop maxerror 1E-6 is equivaent to set scriptvariable.maxerror
1E-6

command argument value

loop start no value

loop stop no value

loop maxiteration max=100;
default = 25.

loop maxerror min=1E-8;

max=1E25;
default=1E-5

clear —commands

Syntax:

clear argument

With clear scriptvariables, al script variables (or al but 2 or 3 elements) are set to
their defaults. clear simulations is equivalent to pressing the ‘clear all smulations
button in the sCAPS action panel.

command argument value remarks

13

clear scriptvariables.all no see text above

value
clear scriptvariables.allbutfirst3 no leaveg Xxvector[i]
value and yvector [1]
with 1 = 0, 1,
2. nNX and ny are
set to 3. The
other script
variables are
not affected.
clear scriptvariables.allbutfirst2 no idem, but with
value i =20, 1
clear scriptvariables.allbutlast3 no idem, but
value shifts elements
i = nx-1, nx-2,
nx-3 (or with
ny) to i = 0,
1, 2 and leaves
them
clear scriptvariables.allbutlast?2 no idem, but
value shifts elements
i1 = nx-1, nx-2
(or with ny) to
i = 0, 1 and
leaves them
clear simulations no see text above
value

The application SCAPSUser Function.dll

Thisfunction isrun by

rundll scapsuserfunction

(As of now, only one user dll is recognized is scaps, named SCAPSUserFunction.dll. The
format of this command allows possible later addition of more dll’s).

This dll is the method that scAPs is using to implement two-way communication with the
user. When you do not (want to) know how to write an own program and make a dll (dynamic
link library) of it, you are restricted to use only the SCAPSUserFunction.dll as delivered with
SCAPS, Or not to use loops in a SCAPs script. The following information is for SCAPS users with
programming skills. By writing their own SCAPSUserFunction.dll, they now can realize the
following (in the formulation of an external SCAPS user):

14

“\ngf&M%@WﬁMba@amm,WMWMWMM

a/aanaﬁmt,Mwm...”

... well, this external program should be named SCAPSUserFunction, and be present as a dll
file in the scapg/lib directory. When implemented in C or C*, this function must comply with
the function definition:

int DLLIMPORT SCAPSUserFunction (int mode, double *xvalue, double *yvalue, double
*xvector, int nx, double *yvector, int ny, double *looperror, char *filename);

The keyword DLLIMPORT might be dependent on the development environment; here it is
for LW/CVI of National Instruments.

The meaning of the other itemsis:

SCAPSUserFunction: the name of the dil. The user must provide a SCAPSUserFunction.dll
and SCAPSUserFunction.lib with this name, in the scaps/lib directory.

int SCAPSUserFunction: the function should return an integer value, indicating the success of
the function evaluation. SCAPS interprets O as ‘success and a negative value as a failure.
This value is stored in the script-variable status, and shown in the error output (to screen or
in the scApPs error logfile.

int mode: an integer that can be used to implement several strategiesin one dll function. In the
example delivered with scaps, mode = 1 or 2 means ‘find aroot’ (e.g. find some Na such that
Voc = 0.50 V), and mode 3 or 4 means ‘find an extremum’ (e.g. find some N; such that n is
maximal).

double *xvalue, double *yvalue: (pointers to) two scalar values, passed to the function by
reference, such that a new value of them can be returned by the function.

double *xvector, double *yvector: (ponters to) two one dimensional arrays, one with
dimension nx and one with dimension ny. These arrays can get new valuesin the function that
IS returned to SCAPS.

int nx, int ny: the dimension of the above values. These are passed by value, not by reference:
their value cannot be updated and returned by the function.

double *looperror: a pointer to a scalar variable, that can be updated and returned by the
function. In the sCAPs script processor, ot is treated as the internal looperror variable.
Returning its value by SCAPSUserFunction.dll is the only way to change looperror in aloop.
Since the script processor only checks if |looperror| < maxerror, so you can also return a
negative value here.

char *filename: a pointer to a string variable of max. 256 characters. The SCAPS script
processor will treat it as a filename, that can be used to set e.g. a spectrum file, a generation
file, afilter file,... withthe set command.

To set up your own dll, you can use other variable names; however, the type, size and order of
the variables must be exactly as specified here. Those not using C or C*™ should use variable
types of the same size (in bits) than the C types int, double, char, pointer. Also, the header (.h

15

file in C) used in the dil should be the same as the corresponding .h file in scaps. Users
planning to develop an own dil for scaps, should ask us for the files SCAPSdIl.c and
SCAPSdIL.h to start from. The actual implementation of SCAPSUserFunction is explained at
the bottom of this document.

Executing system commandsin a script

The command lineto do thisis:

runsystem systemcommand

where systemcommand is something that is recognized by MSWindows as a valid
command. These can be .exe files, .bat files or WINDOWS commands. Here you can any of
your own programmes (extension .exe; the arguments on the command line can be included),
or any of your batch files (extension .bat).

Examples are:

runsystem myownopticalprogramme.exe inputfilel inputfile2
outputfile

runsystem myownwindowsbatchprogramme.bat
runsystem print ivresults.iv

(in the last command, it is likely that Windows will need to know the full path and not only
thefilename...).

Show scriptvariables

The command lineto do thisis:

show scriptvariables
These are shown on the screen, if errorhandling.toscreen is set, or to the standard
error file, if errorhandling.appendtofile or

errorhandling.overwritefile are set. This command is very useful in debugging
your script files. Y ou can comment out the show commands once the script is OK.

actual implementation of SCAPSUser Function

The actual implementation of SCAPSUserFunction implements various actions depending of
the value of the scriptvariable mode.

1. mode = 0. Nothing meaningful is done for now: only filename = “CdS.abs’ is
returned. A programmer could replace this part with whatever calculations or
manipulations that result in afile to pass back to scaps.

2. mode =1 or mode = 2. Helps to search the root of a function y(x). During the preceding
script commands, the successive evaluations of y(x) are stored in xvector and
yvector, the most recent at xvector[0] and yvector[0]. SCAPSUserFunction finds
a better approximation xvalue that would make yvalue = y(xvalue). During the
subsequent sript commands, xvalue should be stored in xvector[0] (and all existing

16

elements of xvector should be pushed one index up). Then a new calculation should be
done, and the result should be stored in yvector[0] (pushing the existing elements one
place up). Then another call to SCAPSUserFunction can be made to obtain a next, better
estimate. Use mode = 1 for a property of ‘linear character’ (e.g. thickness, bandgap,...)
and mode = 2 for a property of ‘logarithmic nature’ (e.g. adoping density, atrap density).
The difference is. a variable of linear nature is incremented by adding or subtracting
something; a variable of logarithmic nature is incremented by multiplying with something.
You must provide at least two y(x) points (as elements [0] and [1] of xvector and
yvector) to start with. Of course there is no guarantee at al that such root can be found
in your problem! Here is an example:

/I find avalue of N; (of the first defect in the first layer) that resultsin Vo =0.5V.
I for some problem and some ill;umination condition to be set first

Il the variable N; isof ‘logarithmic nature’, thus use mode = 2

set scriptvariable.mode 2

set scriptvariable.yvalue 0.5000 // the desired value
/[first initial guess

set scriptvariable.xvector[0] lel4

set layerl.defectl.ntotal xvector[0]

calculate

get characteristics.voc yvector[0]

Il second initial guess

set scriptvariable.xvector[1l] 1lel3

set layerl.defectl.ntotal xvector([1l]

calculate

get characteristics.voc yvector[1]

/I start aloop, do not exagerate with the precision or the number of iterations
loop maxiteration 30

loop maxerror le-4

loop start

/I Run the dll that is delivered with SCAPS

rundll scapsuserfunction

/I it returns xvalue as a better guess for the variable N, set it to N;,

set layerl.defectl.ntotal xvalue

/I place this better guess on xvector[0] (and push the rest upward)

set scriptvariable.xvector xvalue

calculate

/I places the new Voc in yvector[0] and pushes the rest up

get characteristics.voc yvector

17

loop stop

I/ possible output afterwards

show scriptvariables

save results.iv findVoc=0.5V.iv

save graphs.iv.iv findvVoc=0.5V.png

. mode = 3 or mode = 4. Helps to search the maximum of a function y(x). To start with, at
least three values (the elements [0], [1] and [2]) of xvector and yvector should have been
set. The function proposes a new value for the maximum in xvalue, and rearranges the
elements [0], [1] and [2] so that [0] and [1] are closest to the maximum (as it thinks). The
next script commands should place this xvalue on top of xvector, evaluate y(x) for this
new xvalue and place the result on top of the yvector, and then call SCAPSUserFunction
again. Again, there is no guarantee that a maximum will be found in your problem! Here

isan example:

I find avalue of the thickness in layerl of some problem that gives maximum Js.
/[athicknessdis‘linear nature’, and we are looking for a maximum

Il thus we set mode = 3.

set scriptvariable.mode 3

I threeinitial guesses of the parameter d (in SCAPS, it isin pm)

set scriptvariable.xvector[0] 0.5

set scriptvariable.xvector([1l] 1

set scriptvariable.xvector[2] 1.5

I assign the parameter to d and calculate the function J; do so for the 3 guesses
set layerl.thickness xvector[0]

calculate

get characteristics.jsc yvector[0]

set layerl.thickness xvector[1l]

calculate

get characteristics.jsc yvector[1l]

set layerl.thickness xvector[2]

calculate

get characteristics.jsc yvector([2]

/I start the iteration loop; do not exaggerate with the settings!

loop maxiteration 15

loop maxerror 1e-2 [/ 1t should be compared to a Js of about 30 mA/cm?

loop start

rundll scapsuserfunction

/I the function returns xvalue as a better guess for the variable

Il set thisto d, placeit on xvector[0] (and push the rest upward)

18

set layerl.thickness xvalue

set scriptvariable.xvector xvalue

/I calculate and place Js; on top of yvector

calculate

get characteristics.Jsc vyvector

loop stop

Il possible output after the end of the iteration loop

show scriptvariables

save results.iv findmaximumJsc.iv

save graphs.iv.iv findfindmaximumJsc.png
4. mode =5 or mode = 6. Helps to search the minimum of afunction y(x). It works exactly

as the maximum finding algorithm. mode = 5 is for a variable of linear nature, and mode
= 6 for avariable of logarithmic nature.

5. mode > 6. Nothing is done, but the SCAPSUserFunction() waits for you to input your
ideas of a meaningful user program.

Marc B. 1-9-2010

19

