
SCAPS Version 2.9.03, August 2010

This is not a stand-alone manual of SCAPS. It only describes the novelties in SCAPS 2.9.03
compared to SCAPS 2.9.02 and earlier. A (kind of) manual of the SCAPS programme is
contained in another document. This is complemented with (so far) two add-on manuals, for
SCAPS 2.8 (‘grading’) and for SCAPS 2.9 (‘multilevel defects’). Also, there is a short and
recommendable document Getting Started.pdf, which does exactly what it promises.

1 Enhancements of version 2.9.03, compared to version 2.9.02

The most important new features in 2010 are in the user interface: more information can now
be saved and loaded, and a script language is implemented.

1.1 Saving and loading

Until now, you could save and load the problem definition file. Now, you can also save and
load the action list (all settings on the action panel), the batch description (all settings on the
batch panel) and the recorder settings (all settings in the recorder panel). Also, you can save
and load all settings together in one file. Doing so, you can reproduce a former simulation by
just clicking calculate: all other settings will be as they were. In the table below the
default file extensions and directories are given (the SCAPS mother directory, this is where the
scaps.exe file resides, is noted as scaps\). All these files are normal text files that can be read
and edited with e.g. notepad. However, editing is at own risk, it is advised to change these
files from within SCAPS.
SCAPS filetypes default extension default directory
problem definition .def scaps\def
action list .act scaps\def
batch settings .sbf scaps\bdf
recorder settings .srf scaps\bdf
all SCAPS settings in one
a SCAPS scr

.scaps scaps\def
ipt .script scaps\script

1.2 Arguments on the SCAPS command line

n on the desktop. Internally in Windows, a Normally SCAPS is started by clicking an ico
command line attached to this icon is executed. This command line just contains the full path
of the SCAPS .exe file (thus scaps2902.exe or scaps2903.exe or so). Now you can add extra
arguments to this command line: a list of filenames to be loaded/executed before SCAPS starts:
these can be one or more of the definition, action,…, script files listed above; also a spectrum
file and a generation file can be given. The order of execution is: first .def, then .act, .scaps,
.spe, .gen, .sbf, .srf, and finally .script. By doing so, you can ensure that SCAPS starts in the
condition that you prefer, not in the condition fixed by the SCAPS developers: good news for

 1

those who had to set e.g. the wavelength range appropriate for CIGS each time again and
again.
Here are two ways to start SCAPS from a command line, and to edit this line:
1. Make, e.g. with Notepad, a batch file with extension .bat (this stems from the very old MS-DOS

times, but is still supported in Windows). Write the command line in one line, e.g.

scaps2903.exe all CIGS.scaps AM0.spe

A .bat file is run by double clicking it; you can also make a shortcut to it on the desktop. To edit
the .bat file, right-click the name and select ‘edit’, or directly open from Notepad.

2. Right-click the normal SCAPS-icon on your desktop, select ‘properties’, and edit the third line
(‘target’). This is well suited when you do this once and for all. When you would alter the
command line more frequently, the previous method might feel more comfortable.

1.3 A list of parameters or filenames as a batch-parameter

In SCAPS2.9.02, file names could be passed as batch parameters: definition files (always the
first batch parameter), spectrum files and generation files. These filenames could be selected
in a list, but not saved and loaded. Also, an arbitrary parameter list could be used for all
numerical parameters. These were read from a file with extension bdf (batch definition file).
Now, in SCAPS2.9.03, all file parameters are available as batch parameters: thus also
absorption files, filter files, and optical capture files. These lists of filenames can be edited in
a window, and also saved and loaded. In output files, the filenames appear, not just the
number of the file name, as it was before. An arbitrary list of parameters does now not need to
be read from a file, it can be directly edited in a window (where you can paste e.g. from
Excel); the list can be saved and loaded to a file as before.

1.4 A script language for SCAPS

There is now (on urgent users demand) a facility to write a script and let it run in SCAPS. This
script is a normal text file, that contains commands that are equivalent to a mouse-click.
During execution of the script, SCAPS will not respond to user interventions (mouse or
keyboard). After execution of the script, SCAPS returns to it’s normal interactive mode, or is
switched off (to be set with a script command). When no script file was found in the
command line, SCAPS remains the same interactive program as it has always been. A few
SCAPS script are distributed with SCAPS2.9.03 to serve as an example.
There are several levels of sophistication to use scripts.
The basic use is that you write down all actions you would do in the interactive mode, and
then can leave the lab. One advantage of doing so would be that you could split up your to-do
list in several smaller batch jobs instead of one gigantic batch job (by giving several load
batchsettings commands), and that you save the results in between (by giving save
results or save graphs commands). This is safer when there is a risk that your
computer (or SCAPS) would hang up underway; also, all results are waiting for you when
you come back to the lab.
A more sophisticated use is that you start and run an own (or another) program somewhere
during the execution of the script, by giving a runsystem command. For example, you

 2

could load a problem, do just the equilibrium calculation, and save the results of the
generation panel to a file; this also contains the mesh. You could then open an own program,
read this mesh-file and use it to do an own calculation of the optical generation, and save this
in a file with the format of a SCAPS generation file. When your function returns, and the script
is continued. You could then load this generation file, and do all calculations you want. This
procedure is more convenient then the full-manual method that several SCAPS users have
intensely used.
In this way, the communication between SCAPS and your own program is only via the file
system: both SCAPS and your program read and write files, but do not communicate directly
with each other. Also, reading and especially writing files in a SCAPS format might be
cumbersome for a programmer. For advanced users, a more direct communication method
between SCAPS and an own program has been implemented. The user program should have
been compiled as a dynamically linked library, and should be placed in the SCAPS mother
directory as a .dll and a .lib file. Also, these filenames, the name of the dll-program(up to now
there is only one), and the definition (the argument list) of this function is fixed. This
functionality seems to address well skilled programmers only. However, one such dll, with a
flexible functionality, is distributed with SCAPS, and using it does not require high level
programmer skills: see the description of the rundll command below, and the examples
distributed with SCAPS. In contrast, we are confident that the basic use of SCAPS scripts can
facilitate the simulation work of a broad class of SCAPS users.
A detailed description of the SCAPS script language is given below.

Marc Burgelman 27-8-2010

SCAPS script commands

general
The SCAPS-directory, this is where the scaps.exe file resides, is noted as scaps\. All
command lines consist of up to three parts:

command argument value

where command and argument are reserved words, and value is free with some
restrictions, depending on the command line. The three components of the command line are
separated by whitespace (spaces, tabs,..), but should be on one line. They are not case-
sensitive (upper case or lower case letters do not matter).
At this moment, the possible commands are:
SCAPS script comands
load set calculate rundll
save get loop runsystem
action clear show

 3

Whilst processing a script, SCAPS internally maintains a few variables, as specified in the table
below. The user can use these variables in set and get commands, and some are used
internally in a loop. Also, these variables are passed to an external dll function, that can be
made by the user.
name C-type default

value
max value

xvalue double 0

yvalue double 0

xvector array of double 0

yvector array of double 0

nx int 0

ny int 0

loopcounter int 0

maxiteration int 25

looperror double 1E30

maxerror double 1E-3

status int 0

mode int 0

filename character string empty max size 256
bytes

load – commands
Syntax:

load argument value

Where load is the reserved command word, argument can take 7 reserved values, and
value is a filename, without path. The filename can contain spaces. The files are supposed
to reside in their default directories. There is (exceptionally) some freedom allowed in the
name of the argument: just writing definition, action, batch, record, allscaps,
spectrum or generation will also do.
command argument value default-

directory

load definitionfile a filename scaps\def

load actionlistfile a filename scaps\def

load batchsettingsfile a filename scaps\bdf

load recordersettingsfile a filename scaps\bdf

load allscapssettingsfile a filename scaps\def

load spectrumfile a filename scaps\spectrum

load generationfile a filename scaps\generation

 4

save – commands
Syntax:

save argument value

Where save is the reserved command word, argument has a compound syntax; the first
part can take 3 reserved values (settings, results or graphs). The value is a
filename, without path. The filename can contain spaces. The files are supposed to reside in
their default directories.
command argument value default-directory
save settings.definitionfile a filename scaps\def
save settings.actionlistfile a fil

a filename
ename

save settings.batchsettingsfile scaps\bdf
file ename

 settings.allscapssettingsfile e scaps\def
save results.eb scaps\results

ename ts
save results.ac scaps\results

ename ts
save results.cv scaps\results

ename
save results.qe scaps\results

 ename
save graph.eb.wholepanel scaps\results
save graph.eb.energybands scaps\results

rierdensities
save graph.eb.currents

aps
save graph.ac.wholepanel

rents.amplitude
save graph.ac.currents.phase

entials.amplitude

save graph.ac.potentials.phase

panel
save graph.genrec.genrec

graph.genrec.ftraps

save graph.iv.iv

scaps\def

save settings.recordersettings a fil scaps\bdf
save a filenam

a filename
save results.genrec a fil

a filename

scaps\resul

save results.iv a fil
a filename

scaps\resul

save results.cf a fil
a filename

scaps\results

save results.recorder a fil
always .png !

scaps\results

 always .png !
save graph.eb.car …

…

save graph.eb.ftr

save graph.ac.cur

save graph.ac.pot

save graph.genrec.whole

save

save graph.iv.wholepanel

 5

save graph.iv.recombination

save graph.cv.wholepanel

save graph.cv.cv

save graph.cv.gv

save graph.cv.Mott-Schottky

save graph.cv.dopingprofile

save graph.cf.wholepanel

save graph.cf.cf

save graph.cf.gf

save graph.cf.Nyquist

save graph.cf.G(f)/f-f

save graph.qe.wholepanel

save graph.qe.qe

save graph.recording.wholepanel
tsgraph

wholepanel
gradinggraph

save graph.recording.resul

save graph.grading.

save graph.grading.

action – commands
Syntax:

 ar

cti nd word, argument can take 39 reserved values, and
is a e, without path he filename can contain spaces.
s are fault directories. Some values can take two values
or 1) ited degree of freedom e exact arguments. E.g. instead
che iv.doiv or iv.iv. Instead of
che d atch (as in the user interface);

and alike with . When the value of these commands is omitted, the
sum m doiv, docv,…, dobatch…).

value remark

action gument value

Where a on is the reserved comma
value numerical value or a filenam . T
The file supposed to reside in their de
only (0 . There is a (very) lim in th
of iv. ckaction, you can also write
batch. ckaction, you can also write batch. ob

recording.dorecord

ed (giving a clear meaning to the forvalue 1 is as
command argument

action workingpoint.temperature Kelvin

action workingpoint.voltage Volt

workingpoint.frequency Hz

action workingpoint.numberofpoints ≥ 2

none

action

action dark overrides light

action light none overrides dark

 6

action generationfrominternalmodel none overrides
generationfromf

action spectrumfile filename scaps\spectrum

action spectrumcutoff.on none overrides
spectrumcutoff.

action spectrumcutoff.off none overrides

ile

off

spectrumcutoff

action spectrumcutoff.shortlambda e

errides
ernalm

filenam nm

action spectrumcutoff.longlambda nm

action intensity.ND

action intensity.T %

action generationfromfile none ov
generationfromint o

action generationfile me

n

action iv.startV

action iv.increment

 2

points

er decade

 or 1

nt

ion 1

ion or 1

ction

filena scaps\generation

action generationfromfile.attenuatio %

V

action iv.stopV V

action iv.points ≥ 2

V

action iv.checkaction 0 or 1

action iv.stopafterVoc 0 or 1

action cv.startV

action cv.stopV V

action cv.points ≥ V

action cv.increment V

action cv.checkaction 0 or 1

action cf.startf Hz

action cf.stopf Hz

action cf.total ≥ 2

action cf.points p ≥ 2

action cf.checkaction 0

action qe.startlambda nm

action qe.stoplambda nm

action qe.points ≥ 2

action qe.increme nm

action qe.checkact 0 or

action batch.checkact 0

action recording.checka 0 or 1

 7

set – commands
Syntax:

set argument value

where set is the reserved command word, argument can take the reserved values from the
. n also be used to set the abl The third part of
m erical value or a filenam hout path. The
n iles are supposed to resid n their defa ectories. Some
ta nly (0 or 1). When the value is rical value, you can specify
e of the internal script variables xvalue, , xvector[ix],
] (take care that and iy < ny). How the values of the internal variables

 can be set directly with a set and; also, they are
o serFunction.dll (see later). The value of nx, ny is
a n also use x r yvector[-1]: then nx

or ny are incremented with one, and the value is placed as the new last element. You can also
ctor (thus without index), then nx or ny are incremented, all existing

are shifted one up, and the value is placed at xvector[0] or yvector[0]. Before
setting a script variable, you might want to re-initialise them with one of the clear

table below The set command ca script vari es.
the set co mand line is value: this is a num e, wit
filename ca contain spaces. The f e i ult dir
values can ke two values o a nume
a number, .g. 1.25E16, or one yvalue
yvector[ix
xvalue, yvalue

ix < nx
, xvector, yvector -comm

used and p ssibly changed in SCAPSU
updated in get command, see later. You ca vector[-1] o

use xvector or yve
elements

commands, see later.
command argument value remark

set the script variables

set scriptvariable.maxiteration integer

set scriptvariable.status integer

set scriptvariable.mode integer

set scriptvariable.looperror

set scriptvariable.maxerror

set scriptvariable.xvalue

set scriptvariable.yvalue

set scriptvariable.xvector[i] 0 ≤ i ≤ nx -
or i = -1, or
index

set scriptva

1,

no

riable.nx integer

able.yvector[i] ny - 1,
or i = -1, or no
index

length < 256

set scriptvari 0 ≤ i ≤

set scriptvariable.ny integer

set scriptvariable.filename character
string

general set commands

set quitscript.interactiveSCAPS no value e default th

 8

set quitscript.quitSCAPS no value

 value

 value

set errorhandling.overwritefile no value

set errorhandling.outputlist.truncate no value the default

tlist.fillzeros

llwhite value

set external.Rs

Ωcm
-2

set internal.reflection

ission fraction, not %

in

set errorhandling.toscreen no

set errorhandling.appendtofile no the default

set errorhandling.outpu no value

set errorhandling.outputlist.fi no

Ωcm2

set external.Rsh 2

set external.Gsh

 fraction, not %

Scm

set internal.transm

illum ation set commands

set illumination.fromleft no value

set illumination.fromright no value

set qe.photonflux #.cm-2s-1

set qe.photonpower Wcm-2

ct or
co

conta set commands: replace contact with either leftcontact
right ntact

set contact.Sn cm.s-1

set contact.Sp cm.s-1

no value

set contact.opticalfilter.off no value

value

value

set contact.opticalfilter.value fraction, not %

a scaps/filter

or eV

d.off value

.once value

set contact.opticalfilter.on

set contact.opticalfilter.transmission no

set contact.opticalfilter.reflection no

set contact.opticalfilter.file
filename

set contact.workfunction V

set contact.flatban no

set contact.flatband no

set contact.flatband.always no value

layer set commands: replace layer with layer1, layer2, … layer7

set layer.thickness μm
set layer.Eg eV

set layer.chi

set layer.epsilon

V or eV

-

 9

set layer.NC cm-3

-3

set layer.mun m2V-1s-1

-3

-3

3s-1

-1

rption.file
lename

s\absorption

n.A cm-1

rption.B 2cm-1

t ds: replace layer with l er1, …, defect with
t1 defect3

set layer.NV cm

set layer.vthn cm.s-1

set layer.vthp cm.s-1

c

set layer.mup cm2V-1s-1

set layer.NA cm

set layer.ND cm

set layer.radiative cm

set layer.Augern cm6s-1

set layer.Augerp cm6s

set layer.abso a
fi

scap

set layer.absorptio eV-1/2

set layer.abso eV+1/

defec set comman ay and
defec , defect2 or

set layer.defect.singlelevel value no

set layer.defect.uniform value

t.gauss value

ct.CBtail value

ct.VBtail value

ral value

ingledonor value

ingleacceptor value

value

set layer.defect.belowEC

 value

 cm-3

-3eV-1

fa eplace inte h interface1,
fa

no

set layer.defec no

set layer.defe no

set layer.defe no

set layer.defect.neut no

set layer.defect.s no

set layer.defect.s no

set layer.defect.aboveEV no

no value

set layer.defect.aboveEi no

set layer.defect.Et eV

set layer.defect.Echar eV

set layer.defect.Ntotal

set layer.defect.Npeak cm

inter ce set commands: r rface wit
inter ce2, … interface6

set interface.IBtunneling.off no value

set interface.IBtunneling.on

me

no value

set interface.IBtunneling. --

 10

set interface.IBtunneling.mh --

interfa : replace in h interface1,…
Fd IFdefect2, I

ce defect set commands terface wit
and I efect with IFdefect1, Fdefect3

set interface.IFdefect.singlelevel no value

set interface.IFdefect.uniform value

auss value

tail value

Btail value

singledonor no value

ceptor

ghestEV

left value

westEC value

t terface.IFdefect.aboveEileft value

-2

-2eV-1

g.on

g.off

.me

no

set interface.IFdefect.g no

set interface.IFdefect.CB no

set interface.IFdefect.V no

set interface.IFdefect.neutral no value

set interface.IFdefect.

set interface.IFdefect.singleac no value

set interface.IFdefect.abovehi no value

set interface.IFdefect.aboveEV no

set interface.IFdefect.belowlo no

se in no

set interface.IFdefect.aboveEiright no value

set interface.IFdefect.Et eV

set interface.IFdefect.Echar eV

set interface.IFdefect.Ntotal cm

set interface.IFdefect.Npeak cm

set interface.IFdefect.tunnelin no value

set interface.IFdefect.tunnelin no value

set interface.IFdefect.tunneling --

set interface.IFdefect.tunneling.mh --

calculate – command
Syntax:

la

t with pres te” in the
tive

com

calcu te

No argument or value is required. This is equivalen sing “Calcula
interac user interface.

get – mands
Syntax:

rg

you ask for a scalar property, you
e xv variable will then

get a ument variable

Here, variable is one of the internal script variables. When
can us alue, yvalue, xvector[ix] or yvector[iy]: the actual value of the

 11

be overwr us xvector[-1] ector[-1], the
 th x+1 or ny→ny and the actual

argument is in the last element of the vector. when you ask for a vectorial properties, like a
re placed in xvector and yvector.

ose is that the script file, or the program launching the script file (e.g. MatLab,
e, Windows script or MS-DOS command language…) would have

les such as Voc , Jsc, η, … or even arrays as J(V), … in a more convenient way

les can be passed to and updated by the SCAPSUserFunction, that
is under the control of the SCAPS user, see later.

nt value and remarks

itten with the result of the get action. When you e or yv
size of ese vectors is incremented by one (thus nx→n +1),

full I-V or QE curve, these a
The purp
another C-programm
access to variab
then having to retrieve them from a SCAPS output file.
Also, these internal variab

command argume

get solar cell characteristics commands

get characteristics.eta

get characteristics.voc

get characteristics.jsc

get characteristics.ff

get characteristics.vmpp

get characteristics.jmpp

xvalue or yvalue or
xvector[i] or yvector[i] where
the index i should be in the

range 0 ≤ i ≤ nx-1 or 0 ≤ i ≤
ny-1. Using i = -1 means that
the value

a scalar script value:

is appended at the

or (thus whithout index)

incremented with one, all
elements of the vectors are

one position up, and

olar co

end of xvector or yvector, and

that nx or ny are incremented

with one. Using xvector or

yvect
means that the size nx or ny is

shifted
the value returned by
characteristics… is placed at

xvector[0] or yvector[0]
get s cell characteristics mmands

get iv

get cv

get gv

get cf

get gf

get qe

get gx

no variables should be passed:
the two vectorial script

vectors xvector and yvector are

always used: xvector contains

the abscissa (thus V or f or λ
or x), and yvector contains the
ordinate (this I, C, G or QE

or Generation). The sizes nx =

ny are set automatically.

 12

loop – commands
Syntax:

loop argument variable

On encountering a loop start command line t to:
operror that was set before).

xt scr mmands are executed until l
ration

, the internal script variables are se
loopcounter = 0 and looperror = 1.0E30 (or the value of lo
The ne ipt co oop stop is met. Then, if loopcounter <
maxite and looperror > maxerror, th

ented, the script is retaken from th
l varia maxiteration and maxerror c
t lo axerror at any time.
is no ommand to set the internal
unter ternally set to zero on starting a

times the loop is run. The variable looperror d
programme SCAPSUserFunction.dll, that shoul f such

e SCAPS installation). Two of the loop commands are equivalent with

loop maxiteration 20 is equivalent to set
ion 20

ror

e internal script variable loopcounter is
e preceding loop start command. The

an be set with set loop.maxiteration

 script variable loopcounter. The variable
loop, and then incremented with one each

can be set directly or be returned by the ll
d be set-up by the user (one example o

increm and
interna bles
and se op.m

There set c
loopco is in

dll is distributed with th
a set command:
E.g.
scriptvariable.maxiterat

E.g. loop maxerror 1E-6 is equivalent to set scriptvariable.maxer
1E-6

command argument value
loop start no value

loop stop no value

loop maxiteration max=100;
default = 25.

loop maxerror min=1E-8;
max=1E25;
default=1E-5

clear ommands – c
Syntax:

clear argument

ith W
th

clear scriptvariables, all script variables (or all but 2 or 3 elements) are set to
eir defaults. clear simulations is equivalent to pressing the ‘clear all simulations’

 SCAP

d argu remarks

button in the S action panel.
comman ment value

 13

clear scri ables.all
value

see text above ptvari no

clear scriptvariables.allbutfirst3 no
value

l

a or[i]
w , 1,

2 e
set to 3. The
other script
variables are
not affected.

clear scriptvariables.allbutfirst2 no
value

idem, but with
i = 0, 1

i = nx-1, nx-2,
r with

them

s

clear simulations no
value

eaves xvector[i]
nd yvect
ith i = 0

. nx and ny ar

clear scriptvariables.allbutlast3 no
value

idem, but
shifts elements

nx-3 (o
ny) to i = 0,
1, 2 and leaves

clear scriptvariables.allbutlast2 no
value

idem, but
shift elements
i = nx-1, nx-2
(or with ny) to
i = 0, 1 and
leaves them

see text above

The application SCAPSUserFunction.dll
This function is run by

rundll scapsuserfunction

(As of now, only one user dll is recognized is SCAPS, named SCAP
format of this command allows possible later addition of more dll’s).
This dll is the method that SCAPS is using to implement two-way communication with the

en you do not (want to) am and m

SCAPS, or not to use loops in a SCAPS script. The following inf ation is f
programming skills. By writing their own SCAPSUserFunction.dll, they now can realize th
following (in the formulation of an external SCAPS user):

SUserFunction.dll. The

user. Wh
link library) of it, you are rest

know how to write an own progr
ricted to use only the SCAPSUse

ake a dll (dynamic

or SCAPS users with
e

rFunction.dll as delivered with
orm

 14

“I would lity to do a simulation, evaluate the result with an
external program and let it adjust the problem definition for the next simulation,

… well, this external program should be named SCAPSUserFunction, and be present as a dll
plemented in C or C++, this function must comply with

 *yvalue, double

‘find an extremum’ (e.g. find some Nt such that η is

the function by

ys can get new values in the function that

 only checks if |looperror| < maxerror, so you can also return a

 file,… with the set command.

 should use variable
types of the same size (in bits) than the C types int, double, char, pointer. Also, the header (.h

need the possibi

do a simulation, and so on...”

file in the scaps/lib directory. When im
the function definition:
int DLLIMPORT SCAPSUserFunction (int mode, double *xvalue, double
*xvector, int nx, double *yvector, int ny, double *looperror, char *filename);
The keyword DLLIMPORT might be dependent on the development environment; here it is
for LW/CVI of National Instruments.
The meaning of the other items is:
SCAPSUserFunction: the name of the dll. The user must provide a SCAPSUserFunction.dll
and SCAPSUserFunction.lib with this name, in the scaps/lib directory.
int SCAPSUserFunction: the function should return an integer value, indicating the success of
the function evaluation. SCAPS interprets 0 as ‘success’ and a negative value as a failure.
This value is stored in the script-variable status, and shown in the error output (to screen or
in the SCAPS error logfile.
int mode: an integer that can be used to implement several strategies in one dll function. In the
example delivered with SCAPS, mode = 1 or 2 means ‘find a root’ (e.g. find some NA such that
Voc = 0.50 V), and mode 3 or 4 means
maximal).
double *xvalue, double *yvalue: (pointers to) two scalar values, passed to
reference, such that a new value of them can be returned by the function.
double *xvector, double *yvector: (ponters to) two one dimensional arrays, one with
dimension nx and one with dimension ny. These arra
is returned to SCAPS.
int nx, int ny: the dimension of the above values. These are passed by value, not by reference:
their value cannot be updated and returned by the function.
double *looperror: a pointer to a scalar variable, that can be updated and returned by the
function. In the SCAPS script processor, ot is treated as the internal looperror variable.
Returning its value by SCAPSUserFunction.dll is the only way to change looperror in a loop.
Since the script processor
negative value here.
char *filename: a pointer to a string variable of max. 256 characters. The SCAPS script
processor will treat it as a filename, that can be used to set e.g. a spectrum file, a generation
file, a filter
To set up your own dll, you can use other variable names; however, the type, size and order of
the variables must be exactly as specified here. Those not using C or C++

 15

file in C) used in the dll should be the same as the corresponding .h file in SCAPS. Users
planning to develop an own dll for SCAPS, should ask us for the files SCAPSdll.c and
SCAPSdll.h to start from. The actual implementation of SCAPSUserFunction is explained at
the bottom of this document.

Executing system commands in a script
The command line to do this is:

runsystem systemcommand

where systemcommand is something that is recognized by MS-Windows as a valid
command. These can be .exe files, .bat files or WINDOWS commands. Here you can any of
your own programmes (extension .exe; the arguments on the command line can be included),
or any of your batch files (extension .bat).
Examples are:
runsystem myownopticalprogramme.exe inputfile1 inputfile2
outputfile

runsystem myownwindowsbatchprogramme.bat

runsystem print ivresults.iv

(in the last command, it is likely that Windows will need to know the full path and not only
the filename…).

Show scriptvariables
The command line to do this is:

show scriptvariables

These are shown on the screen, if errorhandling.toscreen is set, or to the standard
error file, if errorhandling.appendtofile or
errorhandling.overwritefile are set. This command is very useful in debugging
your script files. You can comment out the show commands once the script is OK.

actual implementation of SCAPSUserFunction
The actual implementation of SCAPSUserFunction implements various actions depending of

ne for now: only filename = “CdS.abs” is

 that result in a file to pass back to SCAPS.
arch the root of a function y(x). During the preceding

successive evaluations of y(x) are stored in xvector and
t xvector[0] and yvector[0]. SCAPSUserFunction finds
lue that would make yvalue = y(xvalue). During the

subsequent sript commands, xvalue should be stored in xvector[0] (and all existing

the value of the scriptvariable mode.

1. mode = 0. Nothing meaningful is do
returned. A programmer could replace this part with whatever calculations or
manipulations

2. mode = 1 or mode = 2. Helps to se
script commands, the
yvector, the most recent a
a better approximation xva

 16

elements of xvector should be pushed one index up). Then a new calculation should be
done, and the result should be stored in yvector[0] (pushing the existing elements one
place up). Then another call to SCAPSUserFunction can be made to obtain a next, better
estimate. Use mode = 1 for a property of ‘linear character’ (e.g. thickness, bandgap,…)
and mode = 2 for a property of ‘logarithmic nature’ (e.g. a doping density, a trap density).

emented by adding or subtracting

(x) points (as elements [0] and [1] of xvector and

hat results in Voc = 0.5 V.

vector[1]

erfunction

Nt,

tter guess on xvector[0] (and push the rest upward)

st up

The difference is: a variable of linear nature is incr
something; a variable of logarithmic nature is incremented by multiplying with something.
You must provide at least two y
yvector) to start with. Of course there is no guarantee at all that such root can be found
in your problem! Here is an example:
 // find a value of Nt (of the first defect in the first layer) t
// for some problem and some ill;umination condition to be set first
// the variable Nt is of ‘logarithmic nature’, thus use mode = 2
set scriptvariable.mode 2

set scriptvariable.yvalue 0.5000 // the desired value
// first initial guess
set scriptvariable.xvector[0] 1e14

set layer1.defect1.ntotal xvector[0]

calculate
get characteristics.voc yvector[0]

// second initial guess
set scriptvariable.xvector[1] 1e13

set layer1.defect1.ntotal xvector[1]

calculate

get characteristics.voc y

// start a loop, do not exagerate with the precision or the number of iterations
loop maxiteration 30

loop maxerror 1e-4

loop start
// Run the dll that is delivered with SCAPS
rundll scapsus

// it returns xvalue as a better guess for the variable Nt, set it to
set layer1.defect1.ntotal xvalue

// place this be
set scriptvariable.xvector xvalue

calculate
// places the new Voc in yvector[0] and pushes the re
get characteristics.voc yvector

 17

loop stop
// possible output afterwards
show scriptvariables

save results.iv findVoc=0.5V.iv

=0.5V.png

3. de = 4. Helps to search the maximum of a function y(x). To start with, at
[2]) of xvector and yvector should have been

in xvalue, and rearranges the
um (as it thinks). The

, evaluate y(x) for this
and then call SCAPSUserFunction

problem! Here

of the thickness in layer1 of some problem that gives maximum Jsc.
maximum

variable.mode 3

arameter d (in SCAPS, it is in µm)

eristics.jsc yvector[1]

cs.jsc yvector[2]
rate with the settings!

d to a Jsc of about 30 mA/cm2

st upward)

save graphs.iv.iv findVoc

mode = 3 or mo
least three values (the elements [0], [1] and
set. The function proposes a new value for the maximum
elements [0], [1] and [2] so that [0] and [1] are closest to the maxim
next script commands should place this xvalue on top of xvector
new xvalue and place the result on top of the yvector,
again. Again, there is no guarantee that a maximum will be found in your
is an example:
// find a value
// a thickness d is ‘linear nature’, and we are looking for a
// thus we set mode = 3.
set script

// three initial guesses of the p
set scriptvariable.xvector[0] 0.5

set scriptvariable.xvector[1] 1

set scriptvariable.xvector[2] 1.5
// assign the parameter to d and calculate the function Jsc; do so for the 3 guesses
set layer1.thickness xvector[0]

calculate
get characteristics.jsc yvector[0]

set layer1.thickness xvector[1]

calculate

get charact

set layer1.thickness xvector[2]

calculate

get characteristi

// start the iteration loop; do not exagge
loop maxiteration 15

loop maxerror 1e-2 // It should be compare
loop start

rundll scapsuserfunction
// the function returns xvalue as a better guess for the variable
// set this to d, place it on xvector[0] (and push the re

 18

set layer1.thickness xvalue

ut after the end of the iteration loop

4. y
ding algorithm. mode = 5 is for a variable of linear nature, and mode

5. aits for you to input your

Ma

set scriptvariable.xvector xvalue
// calculate and place Jsc on top of yvector
calculate

get characteristics.Jsc yvector

loop stop
// possible outp
show scriptvariables

save results.iv findmaximumJsc.iv

save graphs.iv.iv findfindmaximumJsc.png

mode = 5 or mode = 6. Helps to search the minimum of a function y(x). It works exactl
as the maximum fin
= 6 for a variable of logarithmic nature.
mode > 6. Nothing is done, but the SCAPSUserFunction() w
ideas of a meaningful user program.

rc B. 1-9-2010

 19

