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Multivalent defects, e.g. double donors/acceptors or amphoteric defects, are important in materials used in solar
cell production in general and in chalcopyrite materials in particular. We extended our thin film solar cell
simulation software SCAPS to enable the simulation of multivalent defects with up to five different charge states;
the algorithms presented are however able to simulate an arbitrary number of possible charge states. The
presented solutionmethod avoids numerical inaccuracies causedby the subtraction of twoalmost equal numbers.
This new modelling facility is afterwards used to investigate the consequences of the multivalent character of
defects for the simulation of chalcopyrite based solar cells.
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1. Introduction

Multivalent defects, i.e. defects with more than two possible
charge states are important in several material systems used in solar
cell production [1–3]. In particular for chalcopyrite materials,
theoretical studies which are in good agreement with measurement
results identify most of the existing defects as multivalent defects, e.g.
double donors/acceptors [4,5]. The statistics governing this kind of
defects differs from the usual Shockley-Read-Hall (SRH) statistics, for
defects with only two possible charge states [1].

There exist several numerical simulation tools for thin film solar
cells, e.g. AFORS-HET [6], AMPS [7], ASA [3], ASPIN [8], SCAPS [9]. Each of them
having specific strengths and weaknesses. As no freely available
simulation tool was able up to now to model multivalent defects in
their most general form, we extended the recombination facilities of
SCAPS. Therefore we developed algorithms which enable the numerical
simulation of both the steady state and small signal behaviour of
multivalent defects with an arbitrary number of possible charge
states. Due to user interface limitations we limited the number of
possible charge states to five, which should suffice for most practical
problems. These models are afterwards used to demonstrate some
differences between the behaviour of a set of SRH-like defects and a
multivalent defect.
2. Definitions and assumptions

Partially following the notation of Sah and Shockley [1], the different
charge states are designatedwith a subscript s representing the number
of electrons on the defect. The most positive charge state corresponds
then to s=0, and the most negative to s=H. The different transitions
(defect levels) are designated with a superscript which is the mean
valueof the charge states involved. For example thedensity of a defect in
state s is noted as Ns, and the recombination rate associated with
transitions between the states s and s+1 is noted as Us+1/2.

The net electron and hole capture rates are noted as Un
s+1/2

and Up
s+1/2 (1).

Us+1 = 2
n = ncs+1 = 2

n Ns−es+1 = 2
n Ns + 1

Us + 1 = 2
p = pcs+1 = 2

p Ns + 1−es+1 = 2
p Ns

ð1Þ

With cn and cp the electron and hole capture constants. In order to
calculate the emission coefficients (en, ep) the theory of detailed
balance has to be applied. If only two charge states are possible, the
occupation probability under thermal equilibrium is given by the
Fermi-Dirac distribution. For multivalent defects the grand partition
function has to be used instead and take into account possible
degeneracies [10,11], leading to the expressions (2),

es + 1 = 2
n = NCc

s+1 = 2
n

gs
gs+1

exp −EC−E s+1 = 2
t

kT

 !

es+1 = 2
p = NVc

s+1 = 2
p

gs+1

gs
exp − Es+1 = 2

t −EV
kT

 !
ð2Þ

Where Et represents the defect level energy level and gs represents
the degeneracy of the charge state s. In the common case of a two-
level multivalent defect one usually has: g0=g2=g1/2=1, which
corresponds to an s-combination out of a two-element set, gs=Cs

2.
This degeneracy factor can be omitted if the energy level of the defect
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level Et is replaced with Et⁎, which is however temperature dependent
(3).

E�; s+1 = 2
t = E s+1 = 2

t + kT ln
gs

gs+1

� �
ð3Þ

3. Numerical procedures and algorithms

In order to calculate the occupation probabilities of the different
defect levels continuity has to be expressed (4).

∂Ns

∂t = Us−1 = 2
n −Us+1 = 2

n −Us−1 = 2
p + Us+1 = 2

p ð4Þ

This expression doesn't hold for the most negative and positive
charged states, e.g. for s=0 it should be replaced with (5).

∂N0

∂t = −U1 = 2
n + U1 = 2

p ð5Þ

Expressions (4) and (5) lead to H independent equations for H+1
unknown variablesNs. As a last condition, the sum of all defect densities
in the different states should be equal to the total defect densityNt. If the
values of the derivatives with respect to time present in (4) are known,
this system can be solved. Unfortunately, as one of the charge states
usually dominates the others, this system is numerically unstable and
should be solvedwith care, avoiding the subtraction of two almost equal
numbers.

3.1. Steady state analysis

In the steady state regime the derivatives with respect to time
vanish. Eqs. (4) and (5) are then both reduced to (6).

∀s: Us+1 = 2
n = Us+1 = 2

p = Us+1=2 ð6Þ

Sah and Shockley [1] provide the solution of this system shown in
(7) with f defined in (8).

Ns = Nt
fs

∑
H

x=0
fx

ð7Þ

f0 = 1

fs = ∏
s−1

x=0

ncx+1 = 2
n + ex+1 = 2

p

pcx + 1 = 2
n + ex+1 = 2

n

8>><
>>: ð8Þ

The steady state recombination is then given in (9).

Us+1=2 = Ns + Ns+1
� � npcs+1 = 2

n cs+1 = 2
p −es+1 = 2

n es+1 = 2
p

ncs+1 = 2
n + pcs+1 = 2

p + es+1 = 2
n + es+1 = 2

p

ð9Þ

When (9) is expressed in the variables used in SCAPS [12],
numerical inaccuracies are avoided and a stable solution is obtained.

3.2. Small signal analysis

In order to be able to simulate the admittance of a solar cell
structure, a small signal analysis around the steady state operating
point, is carried out in SCAPS [12]. To be able to do this the small signal
values of the occupation probabilities Ñs and the net electron and hole
capture rate Ũn

s+1/2 and Ũp
s+1/2(10) are needed.

Ũs+1 = 2
n = ncs+1 = 2

n Ñs−es+1 = 2
n Ñs+1 + cs+1 = 2

n NDC
s ñ

Ũs+1 = 2
p = pcs+1 = 2

p Ñs+1−es+1 = 2
p Ñs + cs+1 = 2

p NDC
s+1p̃

ð10Þ

Ns
DC represents the steady state charge state density and ñ and p̃

are the small signal free carrier densities. The system represented in
(4) and (5) again has to be solved, but with the recombination rates
replaced by their small signal variants and the sum of all small signal
charge state densities equalling zero. The derivatives with respect to
time no longer vanish but equal jωÑs. The resulting system
unfortunately cannot be solved in the same way as Sah and Shockley
solved the system in the steady state regime, and a straightforward
solution of the system, e.g. using LU decomposition, is numerically not
accurate enough. Hence we propose the following numerically
accurate way of solving the system which we implemented in SCAPS.
The small signal equivalents of (4) and (5), can be re-expressed as
shown in Eq. (11).

Ũs+1 = 2
n −Ũs+1 = 2

p = −jω ∑
s

x=0
Ñx ð11Þ

Together with (10), Ns+1 can be expressed in a recursive way (12).
The coefficients are shown in (13) and (14) with c0=1 and d0=0.

Ñs+1 = ∑
s

x=0
axÑx + bs = cs+1Ñ0 + ds+1 ð12Þ

ax≠s =
jω

pcx+1 = 2
p + ex+1 = 2

n

ax= s =
jω + ncx+1 = 2

n + ex+1 = 2
p

� �
pcx+1 = 2

p + ex+1 = 2
n

bs =
NDC
s cs+1 = 2

n ñ−NDC
s+1c

s+1 = 2
p p̃

pcs+1 = 2
p + es+1 = 2

n

ð13Þ

cs+1 = ∑
s

x=0
axcx

ds+1 = ∑
s

x=0
axdx + bs

ð14Þ

Expressing the sum of all small signal defect densities to be zero
leads to an easy and numerically accurate expression (15).

Ñs = Nt

∑
x=0
x≠s

H
cxds−csdxð Þ

∑
H

x=0
cx

ð15Þ

Substituting the first expression of (12) in (10) the small signal
recombination rates are calculated in a numerically accurate way as
well.

4. Results

Consider a multivalent defect with five possible charge states
under thermal equilibrium. We simulate the occupation probabilities
of the different defect levels as a function of the Fermi level energy. In
SCAPS this has been implemented by changing the doping density of
the semiconductor material, the results are shown in Fig. 1. As
discussed in [1], [10] and [11], the defect is mainly in one charge state
unless the Fermi level is close to the defect level energy Et⁎. The



Fig. 1. SCAPS simulation of the occupation probabilities of a multivalent defect with five
possible charge states under thermal equilibrium conditions. The energy levels
corrected with the degeneracy factor (3) of the different defect levels are marked
with arrows. The band gap of the material is 1.2 eV.

Fig. 2. SCAPS simulation of the J-V characteristic under AM1.5 illumination conditions.
Comparison of the models with an amphoteric defect (solid line) and an equivalent set
of SRH-like defects with the same defect density (dashed line) and with reduced defect
density (dash-dotted line). The black solid and blue dash-dotted line coincides. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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fraction of defects in a specific charge state falls off exponentially with
a slope of an integer times 1/kT.

When the multivalent nature of a defect is not taken into account,
it can bemodelled as a set of SRH-like defects with energy levels given
by Et⁎. This often leads to good results, but the results are not always
consistent. To illustrate the importance of correct multivalent
modelling, we start from the ‘NUMOS CIGS baseline.def’ model [13],
which is distributed together with the installation package of SCAPS,
and which is a good representative for a CIGS thin film solar cell
structure. This structure consists of a 3 μm wide CIGS absorber layer,
together with a 50 nm CdS buffer layer and a ZnOwindow layer. In the
p-type absorber layer, a band gap of 1.1 eV and a shallow doping
density of 2·1016 cm−3 is assumed. In this layer, we introduce an
amphoteric defect (possible charge states −1, 0, +1), with energy
levels 0.45 eV and 0.65 eV above the valence band level and with a
defect density of 1015 cm−3, the capture constants are shown in
Table 1. The results are compared with the simulation results of the
same structure but where the amphoteric defect in the absorber layer
has been replaced with a donor defect located at 0.45 eV−kT ln2 and
an acceptor defect located at 0.65 eV+kT ln2 above the valence band
level, taking into account the degeneracy as shown in Eq. (3). All
simulations are performed at 300 K. The results of the simulation of
the current-voltage characteristic under AM1.5 illumination condi-
tions are shown in Fig. 2. Taking the defect density of both defects, the
same as of the entire amphoteric defect, leads to a bad correspon-
dence of the simulation results and an underestimation of the
efficiency by 3.7% absolute. Reducing the defect density however to
1013 cm−3 leads to a good agreement with the simulation results of
the amphoteric defect. The results of admittance simulations under
dark conditions are shown in Fig. 3. Under thermal equilibrium the
simulation results of the structure with the amphoteric defect
coincides with the results of the structure with the set of SRH-like
defects each having the same defect density as the amphoteric defect.
At forward bias voltages the results disagree, especially at low
frequencies. Comparing the admittance simulations with the simula-
tions of the structure with a set of SRH-like defects with a decreased
defect density, no agreement can be found, even though the current-
voltage simulations agreed.

In the structure, there exists a transitionof thedominant charge state
in the space charge region. With the capture constants chosen as in
Table 1
Overview of the capture constants used for the SCAPS model.

Defect (level) Donor (+/0) Acceptor (0/−)

cn (cm3/s) 10−10 10−6

cp (cm3/s) 10−6 10−10
Table 1 and under illumination or forward bias voltage, the dominant
charge state changes immediately from positive to negative, the neutral
charge state is never dominant. It is obvious that this situation cannot be
represented by a set of SRH-like defects and hence it leads to different
simulation results. Themain parameters which trigger this situation are
the capture constants and the injection of carriers (through voltage or
illumination). Other parameters (temperature, defect density, energetic
position of the defect levels) are not determining the existence of the
disagreement between the simulations with a multivalent defect and a
set of SRH-like defects.

The example above proves that even though some simulations of a
structure containing a multivalent defect can be mimicked with a set
of SRH-like defects, it is not always possible to find such a model
which yields concurring results for different simulations under
various conditions. A proper modelling taking into account the true
nature of the multivalent defect is thus desirable.

5. Conclusions

We extended our thin film solar cell simulation software SCAPS in
order to enable the simulation of multivalent defects. Special
attention had to be devoted to the numerical stability of the used
routines. For the small signal analysis we developed a recursive
solution method which avoids numerical inaccuracies.

This new facility was afterwards used to demonstrate that ignoring
the multivalent nature of a defect and modelling it as a set of SRH-like
defects can have an important influence on the simulation results.
Fig. 3. SCAPS simulation of the capacitance as a function of the frequency under dark
conditions, and different bias voltages V. Comparison of the models with an amphoteric
defect (solid lines) and an equivalent set of SRH-like defects with the same defect
density (dashed lines) and with reduced defect density (dash-dotted lines). At
V=0.0 V the solid and the dashed line coincide.

image of Fig.�2
image of Fig.�3


7484 K. Decock et al. / Thin Solid Films 519 (2011) 7481–7484
Acknowledgements

We acknowledge the support of the Research Foundation—
Flanders (K.D., Ph.D. Fellowship).

References

[1] C.-T. Sah, W. Shockley, Phys. Rev. 109 (4) (1958) 1103.
[2] A. Milnes, Deep Impurities in Semiconductors, John Wiley and sons, New York,

1973.
[3] R.E.I. Schropp, M. Zeman, Amorphous and Microcrystalline Silicon Solar cells,

Kluwer academic publishers, Norwell, 1998.
[4] S. Siebentritt, U. Rau, Wide-Gap Chalcopyrites, Springer-Verlag, Berlin Heidelberg,

2006.
[5] S.B. Zhang, S.H. Wei, A. Zunger, Phys. Rev. B 57 (16) (1997) 9642.
[6] A. Froitzheim, R. Stangl, M. Kriegel, L. Elstner, W. Fuhs, Proceedings of the 3rd

World conference on Photovoltaic Solar Energy Conversion, Osaka (J), 2003, 1P-
D3-34.

[7] Developed at Pennsylvania State University under the direction of S.J.Fonash, see:
http://www.ampsmodeling.org/default.htm (last accessed July 2010).

[8] F. Smole, J. Krč, J. Furlan, Sol. Eergy Mater. Sol. Cells 34 (1994) 385.
[9] M. Burgelman, P. Nollet, S. Degrave, Thin Solid Films 361–362 (2000) 527.

[10] D.C. Look, Phys. Rev. B 24 (10) (1981) 5852.
[11] W. Shockley, J.T. Last, Phys. Rev. 107 (2) (1957) 392.
[12] A. Niemegeers, S. Gillis, M. Burgelman, in: J. Schmid, H.A. Ossenbrink, P. Helm, H.

Ehmann, E.D. Dunlop (Eds.), Proceedings of the 2nd World conference on
Photovoltaic Solar Energy Conversion, Vienna (A), 1998, p.672.

[13] M. Burgelman, J. Verschraegen, B. Minnaert, J. Marlein, in M. Burgelman, M. Topič
(Eds.), Proceedings of NUMOS, Gent, B., 2007, p.357.

http://www.ampsmodeling.org/default.htm

	Modelling multivalent defects in thin film solar cells
	Introduction
	Definitions and assumptions
	Numerical procedures and algorithms
	Steady state analysis
	Small signal analysis

	Results
	Conclusions
	Acknowledgements
	References


